

2 CROSSTALK The Journal of Defense Software Engineering March/April 2009

4

8

12

16

18

23

27

3
11
17
22
30
31

DeparDepar tmentstments

From the Publisher

Coming Events

Call for Articles

Web Sites

SSTC Ad

BackTalk

Software Assurance Practice at Ford:A Case Study
The authors examine how software assurance best practices at the Ford
Motor Company help develop and maintain the organization’s software
assets.
by Dr. Nancy R. Mead, Dr. Dan Shoemaker, and Jeffrey A. Ingalsbe

Defect Detection By Developers
While testers usually detect defects, Rao looks at how developers, with
minimal extra effort, can provide easier and more enhanced detection.
by D.T.V. Ramakrishna Rao

A Uniform Approach for System of Systems
Architecture Evaluation
The authors examine a uniform evaluation approach that focuses on SoS
quality attribute considerations early in the development life cycle.
by Michael Gagliardi, William G. Wood, John Klein, and John Morley

Static Analyzers in Software Engineering
This article outlines the strengths and limitations of static analyzers, and
explains why they should be a key part of every software development
process.
by Dr. Paul E. Black

Management’s Inspection Responsibilities and Tools for
Success
This article looks at software inspection pitfalls, upper management’s
responsibilities during inspection, and computerized inspection tools for
each stage of the process.
by Roger Stewart and Lew Priven

The Evolution of Software Size: A Search for Value
Minkiewicz looks back at 25 years of software sizing methodologies and
suggests what we can learn from the past.
by Arlene F. Minkiewicz

Understanding Software Project Estimates
Learn more about formal estimation techniques, software estimation tools,
the misinterpretation of estimation as target setting, and the accuracy of
early estimates.
by Katherine Baxter

ReinfReinfororcingcing GoodGood PracticesPractices

SoftwarSoftwaree EngineeringEngineering TTechnoloechnologgyy

OpenOpen FForumorum

CrossTalk
OSD (AT&L)

NAVAIR

309 SMXG

DHS

MANAGING DIRECTOR

PUBLISHER

MANAGING EDITOR

ASSOCIATE EDITOR

PUBLISHING COORDINATOR

PHONE

E-MAIL

CROSSTALK ONLINE

Kristin Baldwin

Joan Johnson

Karl Rogers

Joe Jarzombek

Brent Baxter

Kasey Thompson

Drew Brown

Chelene Fortier-Lozancich

Nicole Kentta

(801) 775-5555
stsc.customerservice@
hill.af.mil
www.stsc.hill.af.mil/
crosstalk

CrossTalk,The Journal of Defense Software
Engineering is co-sponsored by the Office of the
Secretary of Defense (OSD) Acquisition, Technology
and Logistics (AT&L); U.S. Navy (USN); U.S.Air Force
(USAF); and the U.S. Department of Homeland
Security (DHS). OSD (AT&L) co-sponsor: Software
Engineering and System Assurance. USN co-sponsor:
Naval Air Systems Command. USAF co-sponsor:
Ogden-ALC 309 SMXG. DHS co-sponsor: National
Cyber Security Division in the National Protection
and Programs Directorate.

The USAF Software Technology Support
Center (STSC) is the publisher of CrossTalk,
providing both editorial oversight and technical review
of the journal.CrossTalk’s mission is to encourage
the engineering development of software to improve
the reliability, sustainability, and responsiveness of our
warfighting capability.

Subscriptions: Send correspondence concerning
subscriptions and changes of address to the following
address.You may e-mail us or use the form on p. 29.

517 SMXS/MXDEA
6022 Fir AVE
BLDG 1238
Hill AFB, UT 84056-5820

Article Submissions:We welcome articles of interest
to the defense software community. Articles must be
approved by the CROSSTALK editorial board prior to
publication. Please follow the Author Guidelines, avail-
able at <www.stsc.hill.af.mil/crosstalk/xtlkguid.pdf>.
CROSSTALK does not pay for submissions. Published
articles remain the property of the authors and may be
submitted to other publications. Security agency releas-
es, clearances, and public affairs office approvals are the
sole responsibility of the author and their organizations.

Reprints: Permission to reprint or post articles must
be requested from the author or the copyright hold-
er and coordinated with CROSSTALK.

Trademarks and Endorsements:This Department of
Defense (DoD) journal is an authorized publication
for members of the DoD. Contents of CROSSTALK
are not necessarily the official views of, or endorsed
by, the U.S. government, the DoD, the co-sponsors, or
the STSC.All product names referenced in this issue
are trademarks of their companies.

CrossTalk Online Services: See <www.stsc.hill.
af.mil/crosstalk>, call (801) 777-0857 or e-mail
<stsc.web master@hill.af.mil>.

Back Issues Available: Please phone or e-mail us to
see if back issues are available free of charge.

Cover Design by
Kent Bingham

ON THE COVER

Additional art services
provided by Janna Jensen

March/April 2009 www.stsc.hill.af.mil 3

From the Publisher

We all have been taught sound practices since childhood.
Remember the ol’ dental mantra of “don’t forget to brush your

teeth after each meal”? Those instructions were soon augmented with
a warning that brushing alone was not enough, and that flossing and
regular check-ups were needed to reinforce brushing and prevent the
development of dental maladies. Our experience with these routines
over our lifetime confirms the worth of reinforcing good, basic prac-

tices. Even armed with this knowledge, many of us at some point—then, now, or
along the way—ignored the act of reinforcement and suffered the occasional,
painful cavity.

Software practices are similar because we understand the value of imple-
menting well-defined best practices, code reviews, and well-structured architec-
tural design in combination with the basics. Even with that understanding, the drive for on-time
delivery or budget and time constraints hampers the opportunity to perform the reinforcing
actions that prevent future problems—and we suffer the software equivalent consequence, oth-
erwise known as software defects.

The March/April issue of CrossTalk provides five well-crafted articles intended to assist
developers in avoiding the pain of “software cavities” by bolstering their current processes
through implementation of sound reinforcement practices. Dr. Nancy R. Mead, Dr. Dan
Shoemaker, and Jeffrey A. Ingalsbe share best software assurance practices as developed by the
Ford Motor Company in Software Assurance Practice at Ford: A Case Study. D.T.V. Ramakrishna Rao
increases developer’s defect awareness through a reinforcing practice known as “active reading”
in Defect Detection by Developers. SEI authors Michael Gagliardi, William G. Wood, John Klein, and
John Morley offer a consistent approach for evaluating and mitigating risk and challenges to
large-scale systems in A Uniform Approach for System of Systems Architecture Evaluation. In Static
Analyzers in Software Engineering, Dr. Paul E. Black contrasts the strengths of static analyzers with
testing as a method for detecting possible code problems. Roger Stewart and Lew Priven explore
ways for leaders to make software inspections unassailable in Management’s Inspection Responsibilities
and Tools for Success.

CrossTalk offers two additional articles this month that complement our theme quite
well. In The Evolution of Software Size: A Search for Value, Arlene F. Minkiewicz, through her own
industry experiences, analyses 25 years of efforts to solve the problems of software size. As well,
Katherine Baxter offers up her article, Understanding Software Project Estimates, in an effort to
remind us of the virtues of software cost estimating on each and every project undertaken.

In closing, remember the words of English philosopher and scientist Francis Bacon who
once said that it is “... not what we profess but what we practice that gives us integrity.” While
Sir Francis wasn’t referring to software when he made this statement, software integrity and
quality can only increase when we follow his advice and reinforce our already good practices.

Kasey Thompson
Publisher

Notice a Few Changes?

Beginning this month and for the remainder of 2009, CrossTalk will be published every
other month. CrossTalk issues in May/June, July/August, September/October, and
November/December will be larger in volume with additional articles. Our hope is that this
format will allow for more detailed articles in a format more conducive for defense software
engineering. Also, we will be adding some new elements, beginning with the sponsor logo box
at the top of this page. Look for more changes as we begin to incorporate them throughout
the next few issues.

Reinforcing Good Practices

CrossTalk
would like to thank
the Department of
Homeland Security

for sponsoring
this issue.

4 CROSSTALK The Journal of Defense Software Engineering March/April 2009

Reinforcing Good Practices

Dr. Nancy R. Mead
Software Engineering Institute

Dr. Dan Shoemaker
University of Detroit Mercy

Defects in software are among the
most potent threats to our national

security. That is because these defects—
whether by malicious agent placement or
faulty manufacturing—represent avenues
of attack for any potential criminal, ter-
rorist, or enemy adversary.

Therefore, it is the highest national
priority to find and employ the right set of
practices in software development, acqui-
sition, and long-term use that will prevent
those defects. This is a noble goal, but the
fact is that there is very little agreement on
what exactly is the optimum set of best
practices. And worse, we have almost no
idea what the current state-of-the-practice
is in business and industry.

Essentially, there are no concrete
points of reference to guide us in affecting
change to the noticeably unsuccessful way
that industry has currently approached the
problem. It’s like “Alice in Wonderland”
when Alice doesn’t care where she goes.
The Cheshire Cat responds that in getting
“somewhere” that “it doesn’t matter
which way you go ... you’re sure to do that
... if you only walk long enough.” So it
seems like the alternatives are to develop a
clear understanding of the current state-
of-the-industry best practice, or to contin-
ue to do a lot of pointless walking.

One Company’s Best Practice
Example
With no clear practices currently in place,
a case study of current industry practice,
especially from a Fortune 10 company, is an
extremely valuable and useful tool for
people who are interested in changing the
state of practices in the software commu-
nity. This article presents an overview of
the control processes employed by the
Ford Motor Company to develop and
maintain their software assets, a brief his-
tory of those processes to provide con-
text, and a discussion of their future.

What Has Gone Before
The IT Security and Controls organization
at Ford dates back to 1998, years before an
agreed-upon international standard for
information security management systems
like ISO/IEC 27001:2005 [1] existed.
Since that time, the organization has
developed control processes for applica-
tions (first) and infrastructure (second).
These are the application control review
(ACR) process and the infrastructure con-
trol review (ICR) process, respectively.
Later, they added a control process called
systems control review (SCR), to be con-
ducted yearly to assess the effectiveness of
controls that had been specified by the
ACR or ICR process and to address the
results of internal audits. Ethical hacking
and static code analysis (on select applica-
tions or infrastructure) were instituted to
identify vulnerabilities (read defects) in
code that was already written. Threat
modeling (on select applications and infra-
structure) was instituted to prevent vul-
nerabilities before code is written. Finally,
the data from ethical hacking and static
code analysis was fed back into a training
and awareness program to help developers
understand common errors being inserted
into code.

Current State Control
Processes
Ford’s current control processes span the
entire asset life cycle (software or hard-
ware) from conception to retirement.
They are the ACR process, the ICR
process, threat modeling, ethical hacking,
static code analysis, risk assessment, and
the SCR process. As a set, these processes
work together to ensure the overall securi-
ty and integrity of Ford’s software. Figure
1 shows when these processes are typical-
ly executed in the life cycle but does not
show how often they are executed. For
example, all applications must compose

application control documentation using
the ACR process before launch, but not all
applications are threat modeled. Threat
modeling is performed only on those
applications that score highest on a risk
assessment or are deemed strategically
important (a small subset of the entire
portfolio). Ethical hacking is performed
based on an independent assessment of
the criticality of the system or infrastruc-
ture. After launch, a yearly risk assessment
is performed that determines whether a
more detailed SCR is required. All applica-
tions and infrastructure scoring high and a
semi-random sample of those scoring
medium or low are required to perform
the SCR. The following sections give an
overview of the processes used.

ICR Process
The ICR process is responsible for ensur-
ing that the overall IT infrastructure is
correct and that adequate controls exist.

Any system activity planning to use a
piece of infrastructure must ensure that
an ICR has been done prior to its inclu-
sion in the application design. More
importantly, a reference to the infrastruc-
ture’s ICR must be included in the ACR of
every application using the infrastructure.

The ICR is initiated by an asset owner
and performed by a designated internal
control coordinator (ICC), with assis-
tance from a security control champion
(SCC). Next, a meeting is conducted with
the person who is accountable for man-
aging any identified risk (the infrastruc-
ture owner). The meeting might also
include the technical support staff or
subject matter experts of the infrastruc-
ture owner. For purchased or commercial
off-the-shelf solutions, the vendor’s tech-
nical support staff may be included as
part of the infrastructure team. In this
meeting, infrastructure components and
the risks applicable to them are identified
and a risk matrix is developed.

Software Assurance Practice at Ford: A Case Study

Jeffrey A. Ingalsbe
Ford Motor Company

Software pervades our technological society, handling our financial transactions, managing power transmission, facilitating
most forms of communication, and keeping us safe. This makes defects in software one of the most potent threats to our
national security, and turns identification of best practices in software development, acquisition, and long-term use the high-
est national priority. This article presents the best practices employed by the Ford Motor Company to develop and main-
tain their software assets.

Software Assurance Practice at Ford: A Case Study

March/April 2009 www.stsc.hill.af.mil 5

The risk matrix is then used to develop
the ICR package. The infrastructure
owner, ICC, and SCC prepare this pack-
age. It includes an overview of the tech-
nology being employed, a network dia-
gram, and a data/process flow diagram.
The two diagrams document where the
infrastructure is being deployed, identify
the hardware used to deploy it, and show
how data flows through the infrastructure.
The infrastructure risk matrix is also
cross-referenced to the tangible controls
that have been put in place to address each
threat.

Finally, all infrastructure components
are explicitly itemized along with all
threats included in the infrastructure risk
matrix. At this point, the controls used to
reduce the risk of a specific threat to that
component are itemized in terms of who
is performing the action, what they are
doing, and what threat is being reduced by
performing that action. A specific disaster
recovery plan is also specified along with
the roles and responsibilities for the criti-
cal job functions needed to implement
and support the infrastructure once a
change has been made.

ACR Process
The ACR process operates at the level of
individual applications, which is the level
that would be of the most interest to peo-
ple concerned with secure software assur-
ance best practices.

The basic goal of the ACR process is
to reduce the risk associated with infor-
mation technology applications. It does
that by ensuring that appropriate controls
are implemented for each application and
that those controls are functioning prop-
erly.

The ACR process assesses all signifi-
cant new and changing services, processes,
operations, and control processes. The

ACR process applies to all IT applications,
including commercial off-the-shelf, inde-
pendent of whether the application
resides internally (on the internal Ford
network) or externally (hosted by an exter-
nal provider).

ACR/ICR Roles and Responsibilities
The ACR and ICR processes involve the
application/infrastructure owner, the IT
organization, a designated ICC, an SCC,
and (sometimes) an auditor. Telecommu-
nication services is involved for external
facing assets and externally hosted assets.

The application or infrastructure
owner is responsible for ensuring that ade-
quate controls exist and that the controls
mitigate risk at a reasonable cost. The IT
organization is responsible for assisting
the application or infrastructure owner in
defining adequate controls and incorpo-
rating them into the application or infra-
structure. The ICC is responsible for over-
seeing the ACR and ICR for the relevant
application data, programs, and infrastruc-
ture. The ICC is responsible for reviewing
and approving the application classifica-
tion and also provides advice on business
controls and coordinates the control
review. The SCC is responsible for guiding
application owners in performing the
specified ACR and ICR processes and also
assists with the completion of the
ACR/ICR documents (as required). The
SCC conducts risk assessments and pre-
implementation reviews for compliance
with corporate policies and verifies that
the documentation is valid based on cur-
rent technical and policy information.

ACR Process Steps
The first step in the ACR process is to
classify the application using the three
basic security objectives: confidentiality,
integrity, and availability (CIA). The appli-

cation is classified along a sliding scale
from low to high impact (numerically
from 1 to 3) on each of these objectives1.
From the CIA rating, a list of questions is
automatically generated. Each question
addresses a particular control.

The application owner, IT organiza-
tion, SCC, and ICC work together in a
series of meetings to prepare the materials
required for completion of the ACR. The
required materials include a non-technical
description of the application that
describes the purpose of the application,
how it will function when installed, prod-
ucts, hardware, and software needed, and
what activities use the application. The
review materials also include a process
flowchart of the application that identifies
and describes the sources of input, master
files, outputs, and major processing pro-
grams. It must describe the application to
someone not familiar with it and graphi-
cally highlight where controls are required.
Also required is a network flowchart,
which is a detailed depiction of the net-
work and the various connected host
computers. The aim of this flowchart is to
facilitate an understanding of the controls
architecture. It depicts the flow of appli-
cation data and the direction of the data
flow. If connectivity is required from an
outside vendor, the diagram should also
depict the access-control points (firewalls,
routers, or virtual private network devices)
and the network flow though these
devices.

Once the materials are complete, the
ICC will determine that the ACR is ready
for a formal review. The product of the
formal review is a statement concerning
the adequacy of controls. The application
owner is then responsible for revising the
controls and corresponding ACR docu-
mentation based on the outcome of this
review.

Conception Launch Retirement

Compose ACR Documentation (All Applications)

Compose ICR Documentation (All Infrastructure)

Perform Threat Model

(High-Risk Applications)
Perform Ethical Hack

Perform Static Code Analysis

Perform Annual Risk Assessment
(All Applications)

Perform Annual SCR
(If Required by Risk Assessment)

(High-Risk Applications)

Figure 1: Ford’s Control Processes

Reinforcing Good Practices

6 CROSSTALK The Journal of Defense Software Engineering March/April 2009

SCR Process
The SCR process is performed annually
on those applications or infrastructure
that score High on the annual risk assess-
ment as well as a semi-random sample of
medium- and low-risk applications or
infrastructure. It comprises a set of check-
lists, testing, and evidence-gathering tech-
niques that (together) are used to assess
whether all of the controls that were doc-
umented by the ACR and ICR processes
are being performed. It essentially vali-
dates that the planned controls are work-
ing and that additional controls are put in
place if anything has changed since the
last review.

The IT Policy Manual, which guides
all Ford IT work, requires an annual risk
assessment for each application and
infrastructure component. Ford requires
this in order to prioritize SCR process
work each year. The SCR process ensures
that all of the necessary controls are ade-
quate and are functioning effectively.
This helps managers to identify control
weaknesses before they can be exploited.
It also provides a mechanism and process
for developing corrective actions and
tracking closure of the weaknesses that
may be found.

Threat Modeling
Threat modeling is performed on strategi-
cally important projects and those that
score high on a risk assessment. It is typi-
cally performed in the design phase and is
focused on prevention of vulnerabilities
that may have a high business impact if
exploited. In its simplest form, threat
modeling involves six steps:
1. Identifying assets within the applica-

tion or infrastructure (e.g., data or
processes).

2. Identifying people involved (e.g.,
administrators or users).

3. Identifying high-level or meta-use
cases (these are not the same as Uni-
fied Modeling Language use cases).

4. Identifying threats to assets.
5. Classifying threats using what is called

DREAD—Damage potential, Repro-
ducibility, Exploitability, Affected
users, and Discoverability [2]—and
then assigning a 0 to 5 value to each of
the five types2.

6. Choosing whether to accept, transfer,
avoid, or mitigate the risk posed by
those threats.
Threat modeling typically takes four to

five working sessions, and should involve
both IT (because they understand threats)
and the (internal) business customer
(because they understand value).

Ethical Hacking
Ethical hacking is performed on strategi-
cally important projects and by request. It
is typically performed after implementa-
tion and is focused on the detection of
vulnerabilities. The ethical hack team uses
a combination of tools, processes, and
acquired skills to perform the hacks.
Detailed metrics are kept on the results of
the hack and given to the requestor.
Metrics on classes of vulnerabilities (e.g.,
buffer overflow, cross-site scripting,
Structured Query Language injection)
have been used to develop a training
course for developers.

Static Code Analysis
Static code analysis is performed by
request when an application owner feels
that there is a higher risk associated with
the project. It is typically performed after
implementation and is focused on the
detection of vulnerabilities. A commer-
cial off-the-shelf tool is used to analyze
the code. False positives are eliminated
and the report is given back to the
requestor.

Future State
The control processes outlined in this
article have been instituted over a peri-
od of 10 years. The older processes
have an information assurance (IA) feel
to them (i.e., information protection)
while the newer processes have a soft-
ware assurance feel (i.e., prevention of
coding vulnerabilities). The acceptance
and popularity of ISO/IEC 27001 and
the desire to make decisions based on

business value and risk has prompted
Ford’s IT Security and Controls organi-
zation to begin aligning their processes
with the international standard. The
work is in its infancy, but it is already
clear that quantifying asset value and
risk—and using them to make deci-
sions—is the right course.

Observations
This is a case study, so conclusions
should not be drawn. However, some
important observations can be made
based on what has been reported here.

First, Ford clearly pays considerable
attention to the security of its applica-
tions and its associated infrastructure.
The degree of detailed rigor of their
processes, the time spent, the documen-
tation produced, and the obvious
bureaucratic coordination and control
requirements support that observation.
Additionally, they pay particular atten-
tion to anything that might fall under
Sarbanes-Oxley Act3 purview by requir-
ing that those applications are always
addressed with the highest degree of
rigor. Their control perspective, until
recently, was oriented toward classic IA
principles rather than those of software
assurance. Specifically, the risks are
rated on the CIA scale, which is typical
of IA risk assessments. While IA con-
cerns are to some extent founded on
secure software assurance, the things
that threaten information are not the
same as those things that might threaten
software. In fact, it is perfectly possible
for a piece of software, both under
development and in actual use, to have
all of the necessary controls to assure
any set of regulatory requirements while
still being full of exploitable holes.

Second, anecdotal evidence suggests
that there may be an evolutionary pro-
gression an organization goes through
as they move from no security focus to best
in class. First, they get things like
antivirus, incident response, and foren-
sics in place. These things are served up
centrally and (of course) have an IA
focus. Next, they move on to securing
applications and infrastructure. How-
ever, since they have probably not
plugged into those organizations yet, it
is natural for them to show up just
before launch or at gate review to ren-
der their opinion on the security of the
application or infrastructure. This
would tend to be adversarial. Next, they
would get involved early in the software
development process and help develop-
ers classify the importance of the infor-
mation being created/deleted/modi-

“With no clear
practices currently in
place, a case study
of current industry

practice ... is an
extremely valuable
and useful tool for
people who are

interested in changing
the state of

practices in the
software community.”

Software Assurance Practice at Ford: A Case Study

March/April 2009 www.stsc.hill.af.mil 7

fied/transmitted by the application.
They would then prescribe controls
based on that score and do things like
ethical hacking to ensure that those with
the highest scores don’t have big vulner-
abilities. Some companies stop at this
point. More introspective companies
may begin to engage their development
community in order to build better soft-
ware and ask questions like, “Is there a
need to protect things at different lev-
els?” Such companies would then do
things like look at their penetration test
results and take the top 10 vulnerabili-
ties back to the development communi-
ty, then working with them to change
coding practices in order to eliminate
those vulnerabilities and establish better
coding practices. This is where Ford is
right now. They have rolled out threat
modeling and are engaging their devel-
opment community in order to develop
more secure coding practices.

The fact that a company well-known
for its competence and effectiveness in
IT security has recognized (and is acting
upon) the need to move beyond IA to
software assurance bodes well for oth-
ers who are not nearly as far along the
evolutionary scale. However, it may

indicate that we have a ways to go in
popularizing the importance of soft-
ware assurance best practice in conven-
tional IT security operation.

It is possible and (perhaps) probable
that many of the practices that the soft-
ware assurance community would rec-
ognize as secure software assurance are
taking place on an ad-hoc basis within
the actual application development and
maintenance function within IT itself,
which suggests where the next study
should be focused. However, it is also
clear that the only way to ensure that
those practices are institutionalized is to
provide both the incentive and the guid-
ance to get large companies to imple-
ment secure software assurance practice
as part of their conventional application
security operation.u

References
1. ISO/IEC 27001:2005. “Information

Technology – Security Techniques –
Information Security Management
Systems – Requirements.” Distributed
through the American National
Standards Institute. 23 Aug. 2007.

2. Howard, Michael, and David LeBlanc.
Writing Secure Code (With CD-

ROM). Microsoft Press, 2001.

Note
1. For example, an application that han-

dles the most confidential data with
the highest integrity requirement and
the highest availability requirement
would be rated 3,3,3. An application
that handles the least confidential data
with the lowest integrity requirement
and the lowest availability requirement
would be rated 1,1,1.

2. By assigning a 0 to 5 value for each
part of DREAD, a final risk value is
obtained that allows threats to be com-
pared. Despite the fact that a formula is
used to calculate a risk value, it is
important to understand that it is still
subjective. A significant effort by par-
ticipants needs to be made to be con-
sistent.

3. The Sarbanes-Oxley Act of 2002
(Pub.L. 107-204, 116 Stat. 745, enacted
30 July, 2002) is a federal law that
describes specific mandates and
requirements for financial reporting.

About the Authors

Dan Shoemaker, Ph.D.,
is the director of the
Centre for Assurance
Studies. He has been pro-
fessor and chair of com-
puter and information

systems at the University of Detroit
Mercy for 24 years, and co-authored the
textbook, “Information Assurance for
the Enterprise.” His research interests
are in the areas of secure software assur-
ance, information assurance and enter-
prise security architectures, and informa-
tion technology governance and control.
Shoemaker has both a bachelor’s and a
doctorate degree from the University of
Michigan, and master’s degrees from
Eastern Michigan University.

Computer and Information
Systems – College of Business
Administration
University of Detroit Mercy
Detroit, MI 48221
Phone: (313) 993-1202
E-mail: shoemadp@udmercy.edu

Nancy R. Mead, Ph.D.,
is a senior member of
the technical staff in the
Networked Systems Sur-
vivability Program at the
SEI. She is also a faculty

member at Carnegie Mellon University.
Mead’s research interests are in the areas
of information security, software
requirements engineering, and software
architectures. She is a Fellow of the
IEEE and the IEEE Computer Society
and is also a member of the Association
for Computing Machinery. Mead
received her doctorate in mathematics
from the Polytechnic Institute of New
York, and received bachelor’s and mas-
ter’s degrees in mathematics from New
York University.

SEI
4500 5th AVE
Pittsburgh, PA 15213
E-mail: nrm@sei.cmu.edu

Jeffrey A. Ingalsbe is a
senior security and con-
trols engineer with the
Ford Motor Company.
He is involved in infor-
mation security solutions

for the enterprise, threat modeling
efforts, and strategic security research.
Ingalsbe also serves as an expert indus-
try panelist on two national working
groups within the DHS’s Cybersecurity
Division. He has a bachelor’s degree in
electrical engineering and a master’s
degree in computer information systems
from Michigan Technological University
and the University of Detroit Mercy,
respectively. Ingalsbe is currently work-
ing on his doctorate degree in software
engineering at Oakland University.

Ford Motor Company
17475 Federal DR
STE 800-D04
Allen Park, MI 48101
Phone: (313) 390-9278
E-mail: jingalsb@ford.com

8 CROSSTALK The Journal of Defense Software Engineering March/April 2009

Bugs plague almost all software sys-
tems. Indeed, more than half the time

spent in a typical software project is on
bug fixing [1]. Given the severe conse-
quences bugs may have and the significant
percentage of project effort associated
with them, tackling bugs is of fundamen-
tal importance.

Defect detection is the primary strate-
gy used to tackle defects, with testing
being the predominant way defect detec-
tion is accomplished. In the past decade,
inspections have been increasingly used to
supplement testing. Still, defects present a
significant problem. The software indus-
try must continue to find new cost-effective
ways to supplement current strategies to
find defects.

This article proposes new approaches to
detect defects. Developers engage in cer-
tain activities, often to detect defects in
their new code. The new approaches are
additions to these activities towards
detecting defects in the existing code.
These additions require little extra effort.
Since defects in the existing code are
detected almost as a by-product of these
activities, they are referred to as by-product
defects (BDs)1. This strategy has resulted
not only in efficient detection of BDs but
also in easier fixing.

I, along with a team at Infosys
Technologies, have been applying these
approaches for the past eight years on
large and complex software systems and
have found hundreds of defects.

Some developers use variations of the
activities discussed in this article, but they
are by no means universally used. Also, we
have not seen a clear articulation of them
in research literature related to software
development. Hence, description of these
activities can be construed as a description
of a set of best practices for software
developers. The primary contribution,
however, is the addition made to these
activities towards detecting BDs.

The primary sections of this article:
• Identify defect consciousness, an impor-

tant ingredient for detection of BDs.

• Describe the activities during which
developers find BDs.

• Relate experiences in deploying the
activities.

Defect Consciousness
By defect consciousness, we mean the
understanding of defects: what they are,
what their types are, how they show up,
what causes them, etc. Novices tend to
lack this knowledge as programming
courses generally do not emphasize this
knowledge vis-à-vis writing programs.
Developers normally gain this knowledge
with experience, but not consciously. That
leads to gaps in their knowledge. Hence, it
is important to gain defect understanding
consciously.

I found certain approaches to be
rather effective in cultivating defect con-
sciousness. Some books and papers focus
on defects (for example, [2]), and are use-
ful for a general understanding of defects.
This understanding should be supple-
mented with defects in specific projects
that developers are working on, as there
are often defect types idiosyncratic to a
project. Projects often have coding and
other guidelines in this regard. While
guidelines tend to be just bland state-
ments, I found that augmenting a guide-
line by pointing at a specific fixed bug
report (as an illustration) has many bene-
fits. As the saying goes, “an example is
better than a precept” [3]. It illustrates a
defect in action: how it looks in code, how
it shows up during execution, how it is
debugged, etc. It helps in recognizing
defects easily. Developers should also
develop a life-long habit of understanding
bug reports fixed by others.

The following activities may detect
defects even without defect conscious-
ness, but they will be more effective cou-
pled with it.

Activities to Detect BDs
This section describes a set of activities
during which BDs may be detected by
developers: reading modules, regular

reviews, triggered reviews, regular unit
testing, and triggered unit testing. The
activities are deployed in a typical industri-
al software development manner with
dozens of developers working on a large
and complex software system.

Description of each activity is orga-
nized as follows:
• What is the activity?
• When is it done?
• Why is it done?
• How is it done?
• How might BDs be detected as part of

it?
• How does detecting BDs help the pri-

mary purpose of the activity?
• Why is it easier to fix BDs compared

to defects detected by other means
(such as traditional testing)?

Reading Modules
A module is a single file or a collection of
files used to achieve a specific functionali-
ty. Developers should read a module for
two reasons:
• Reading modules for learning.

Reading code is the best (and some-
times the only) way of understanding
the functionality implemented by a
module. For example, in the case of
networking protocols, protocol under-
standing from standards can be clari-
fied and crystallized by reading the
code implementing the protocol.

• Reading modules while working on
a bug or an enhancement. Develop-
ers should completely read those mod-
ules that they are modifying as part of
their work. It helps in not introducing
bugs by making sure that all the
required changes are made for their
work in that module.
Many techniques exist for reading

code [4]. A technique particularly effective
to detecting BDs is active reading [5],
which is a form of critical reading of the
code: read a few lines, try to paraphrase
them in your own words, ask questions,
then try to answer those questions. I have
seen in practice that reading a module

Defect Detection By Developers

Poor quality caused by defects continues to be a major problem facing the software industry. Unlike the traditional way of
handling this problem where testers detect defects, this article suggests approaches where developers detect defects. This approach
builds upon existing techniques, augments certain activities that developers often already engage in, and focuses on detecting
defects in existing code. The end result is little additional effort in defect detection, easier fixes, and enhancing the effectiveness
of the original intention of the activities.

D.T.V. Ramakrishna Rao
Infosys Technologies Limited

Defect Detection By Developers

March/April 2009 www.stsc.hill.af.mil 9

once is not enough; reading twice is often
sufficient. Active reading, coupled with
defect consciousness, is very effective in
both understanding code (primary pur-
pose) and in detecting BDs.

When a defect is found while reading
a module, it is much easier to fix com-
pared to a traditional testing-found
defect, for the same reason that inspec-
tion-found defects are easier to fix com-
pared to testing-found defects (one can
find a defect’s location, what kind it is, as
well as its cause) [6].

Comparison With Walkthroughs
Code reading (reading a module) as advo-
cated in this article is a form of review,
walkthrough, or inspection [6]. But there
are notable differences. This section
explores these differences and their impli-
cations.

Predominantly, code walkthroughs are
used as a mechanism to review the imple-
mentation done by a developer. So, I will
first compare walkthroughs and code
reading in the context of a developer
working on an enhancement to the code
base.

A walkthrough is done to detect
defects by a set of reviewers after a devel-
oper completes implementation. In con-
trast, code reading is done to detect
defects by the developer during imple-
mentation. Hence, defects will be found
sooner in code reading.

The intention of the walkthrough is to
detect defects in the enhancement, so the
developer walks the reviewers through his
or her changes of the modules. The walk-
through focuses on the changes to a mod-
ule per se, whereas in code reading, the
focus is on the entire module even when
only a few changes are made to it. The
change in focus helps code reading by
detecting even more defects than walk-
throughs would. A module in a system
might have gone through many modifica-
tions over time. As a module evolves, it
tends to lose unity, becomes more com-
plex, and hinders maintainability. Because
of such evolution, some bugs tend to get
introduced. When reading the whole mod-
ule, there is a higher possibility of detect-
ing those bugs.

Less often, code walkthroughs cover
entire modules for special objectives (e.g.,
security audits). Code reading mainly dif-
fers in the way it is structured to efficient-
ly and simultaneously achieve a novel
combination of objectives: critical under-
standing of a module, detection of defects
in the module (aided by critical under-
standing and defect consciousness), and
ensuring that changes the developer is

making to the module are complete and
consistent (again, aided by critical under-
standing and defect consciousness). I am
unaware of an existing code walkthrough
that achieves the same objectives.

Regular Reviews
Reviews or inspections are used in some
organizations to find bugs in the submit-
ted artifacts [6]. During code reviews,
reviewers try to find bugs in the submitted
code changes with the help of additional
documentation such as checklists and
source documents (e.g., designs and
requirements of the code changes). But
during reviews, they may find bugs not
only in the code changes but also in other
documents. For example, Gilb [6]
observed that inspections often find bugs
in the source documents.

I am not, however, aware of any prior
observations that reviews may find bugs in
code that is not part of the changes. But
indeed, reviews are helpful in finding such
bugs. If code changes show that a func-
tion is modified, reviewers should read
related code surrounding the changes,
functions that call the changed function,
and functions called by the changed func-
tion. Reviewers need to understand the
related code and, in light of that under-
standing, check whether the code changes
have any bugs. For a reviewer with defect
consciousness, the process of understand-
ing the related code using active reading
(as previously discussed) provides oppor-
tunities for uncovering bugs in that code
and help in a more effective review.

BDs found during regular reviews, just

like BDs found during reading modules,
will be easier to fix.

Triggered Reviews
The reviews in the previous section are
conducted before checking code changes
into the code base; in some instances,
however, there is a need to review code
changes afterwards. Suppose you are mak-
ing changes to your private copy of a code
base while working on a bug or an
enhancement. When multiple developers
are working on the same code base, what
you are doing may be affected by what
others are checking into, in turn necessi-
tating further changes. Therefore, you
should go through each of the check-ins
and review those that are related to your
changes carefully.

Unfortunately, it is not always easy to
know when a check-in is related to your
change. From experience, I’ve found the
following check-ins require careful review:
• Check-ins that modify the modules

you’ve changed. It is very important
to scrutinize such check-ins, as they
are very likely to affect your changes.
You are also in a good position to
review those check-ins because of the
familiarity with the changed modules
(having followed the first activity:
reading modules).

• Check-ins that modify the subsys-
tems you’ve changed. Large com-
plex systems are normally divided into
subsystems, which in turn are divided
into modules. For example, in a net-
working system, transmission control
protocol implementation may consti-
tute a subsystem. If a check-in modi-
fies the subsystem you are changing, it
is likely to affect your changes.

• Check-ins that modify the subsys-
tems you depend upon. Software
systems normally have a set of subsys-
tems that are utilitarian in nature. They
are often organized as libraries (e.g., a
string-processing library). The rest of
the system uses these subsystems.
Changes to these subsystems tend to
be rare but are not totally unheard of.
If a check-in modifies such a subsys-
tem that you are using, you need to
update your changes. Moreover, all the
changes to utility subsystems should
be studied for continuing education on
the project, as these subsystems are
frequently used.

• Check-ins related to your subpro-
ject. Large enhancements tend to be
implemented by multiple developers as
subprojects. If your changes are part
of a subproject, you should actively
review all of the check-ins in the sub-

“A walkthrough is
done to detect

defects by a set of
reviewers after a

developer completes
implementation.
In contrast, code

reading is done to
detect defects by the

developer during
implementation.”

Reinforcing Good Practices

10 CROSSTALK The Journal of Defense Software Engineering March/April 2009

project for three reasons. First, the
check-in may be directly or indirectly
related to your changes. Second, being
part of the subproject means that you
are in a good position to review the
check-ins. Third, most subprojects are
such that you may be working on yet
another part of the subproject imme-
diately after completing your current
part. Hence, it is important to keep
track of the design and implementa-
tion of the subproject on a continuous
review basis.
The first step of reviewing a needed

check-in is to understand the code
changes made by it, and then assessing its
impact on your changes. For a reviewer
with defect consciousness, the process of
understanding the checked-in code using
active reading also provides opportunities
for uncovering defects in that code.

BDs found during triggered reviews,
just like BDs found during reading mod-
ules, will be easier to fix.

Regular Unit Testing
While modifying software, developers can
also conduct unit tests to detect bugs in
their changes. Their testing can be charac-
terized by two aspects:
• Tunnel vision. They tend to concen-

trate only on the behavior of their
changes.

• Focus on end results. The tests are
often conducted simply to verify the
outputs.
This type of unit testing is not very

effective in uncovering bugs for two rea-
sons.

First, it is not only important to check
the output but also to check the entire
processing that led to the output.
Sometimes, intermediate processing may
be incorrect, but the final result may turn
out to be correct. For example, in a pro-
gram if either function A or B returns
true, further processing is undertaken.
For a particular input, both the functions
should return true but, due to a bug,
function B returns false—yet the final

result is as expected. Hence, the bug went
undetected. These bugs in the intermedi-
ate processing may manifest in the future.

The second issue involves changes in
large and complex systems: Developers
may not be aware of the repercussions of
their changes in other parts of the system.

More effective unit testing would take
these two points into account. Develop-
ers should go through the processing of
changed modules in minute detail either
using a debugger in single-stepping mode
or enabling tracing on the modules (a
module supports tracing by printing
debug output of its processing in great
detail). To observe the impact of the
changes on the rest of the system, enable
the log messages at all levels and asser-
tion checking on the entire system.

Developers should analyze the previ-
ously mentioned processing details and
the messages produced by the system for
anomalies (defect consciousness will aid
here). Every anomaly needs to be ana-
lyzed to check whether it represents a
bug, and (if so) whether it is pre-existing
or if it was introduced by the developer’s
changes. If the anomaly is not a bug, it
should enhance the understanding of the
system for the developer. If the anomaly
is a bug introduced by the developer, it
obviously needs to be fixed. If the anom-
aly is an existing bug, the developer has
found the bug and should open a bug
report. The report should include the
analysis already done to fix the bug faster
in the future.

The enhanced unit testing helps both
in detecting existing bugs in the system
and in more effectively detecting bugs
made by a developer.

Triggered Unit Testing
The activity described in this section
applies in the same context as described
in the Triggered Reviews section: The
new check-ins may affect the changes
being made. That section suggested
reviewing the check-ins in this context.
However, reviews may not catch all of
the interactions that may exist between
the check-ins and your changes. This is
when testing becomes useful. Empiri-
cally, testing and reviews are shown to be
complementary in their defect detection
abilities [7].

After merging the check-ins with your
changes, do not make any further
changes to the code. Run a representative
set of passed tests that you previously
used for testing your changes (an applica-
tion of regression testing in a develop-
ment context). If the test fails, investigate
to distinguish between two possibilities:

Your code may need to be updated (in
light of the check-ins), or there is a bug in
the check-ins.

Of course, if your code needs to be
updated, do so immediately. And, even if
it represents a bug in the check-ins, the
investigation already conducted is a good
starting point for fixing the bug. There-
fore, the complete investigation details
should be a part of your bug report in
order to fix the bug faster in the future.

Case Study
The described activities have been
applied in multiple projects in our orga-
nization and have helped in finding hun-
dreds of BDs. To show the benefits of
these activities, I present a case study.

This case study shows the results of
applying the activities by a single devel-
oper in a span of two years while
enhancing and fixing bugs on a very
large software system. The developer
had about five years of experience at the
beginning of the case study. The system
was a C/C++ based mature networking
software system having more than 50
million lines of code and was maintained
by more than 100 people. The develop-
ment process is typical of industrial soft-
ware development. When a developer is
enhancing or fixing a bug, he or she will
do unit testing and submit the imple-
mentation to peer review. After the
review, code is checked-in. When all
enhancements and bug fixes for a release
are in place, the testing team conducts
integration testing and system testing.

Table 1 shows the distribution of
BDs detected as a result of applying the
activities by the developer. When the
developer applied the activities, the
detected defects were found in both the
developer’s new code and the existing
code (BDs). Table 1 shows only BDs
and not the defects detected by the
developer in the new code. The BDs
represent defects detected that leaked
from the described formal stages of
defect detection. For example, BDs
detected by triggered review and trig-
gered testing are missed by unit testing
and peer review.

In all, the developer detected 67
defects. Reviewing code is found to be
particularly effective. Almost half of the
defects were detected during reading mod-
ules and about 75 percent were detected in
some form of reviews. Triggered activities
detected 27 percent of the BDs. Two main
reasons accounted for their success: divi-
sion of large enhancements into pieces to
be done by multiple developers, and fre-

1

Activity No. of
Bugs

Percent

Reading Modules 32 48

Regular Reviews 7 10

Triggered Reviews 12 18

Regular Unit
Testing

10 15

Triggered Unit
Testing

6 9

Total 67 100

Table 1: Bugs Found by the Activities

Defect Detection By Developers

March/April 2009 www.stsc.hill.af.mil 11

quent modification of certain modules.
Testing activities, however, should not be
discounted; testing-detected defects,
though fewer, tended to be of higher
severity.

The case study shows that, using the
activities, a developer can actually detect
existing bugs in the system—just like a
tester. More importantly, these defects are
missed by formal stages of defect detec-
tion. The number of defects detected by
the developer is of the same order as
detected by a test engineer in the same
timeframe. It is as if a test engineer was
acquired for free!

Conclusion
This article discussed a set of activities for
developers to detect defects in their new
code, and augmented the activities to detect
defects in existing code (BDs). This strate-
gy has resulted in the following advantages:
• Detecting defects with little additional

effort.
• Easier fixing of these defects com-

pared to defects found during tradi-
tional testing.

• Enhancing the primary purpose of the
activities that are augmented to detect
BDs.
The current deployment of these

activities falls far short of their potential
utility. For more effective deployment, this
article provides a starting point:
Developers should enhance their defect
consciousness and follow the activities as
described. For long-term retention of
these activities, they should be integrated
with the development methodologies.

From a larger perspective, this article
makes a small contribution regarding how
developers may contribute more towards
the quality of products. The current devel-
opment methodologies do not fully utilize
the expertise of developers in detecting
defects. Proposed here are some strategies
to utilize their knowledge. The techniques
discussed basically fall into two categories:
review and testing. There are many
chances/reasons for developers to read or
test code. Every such chance should be
exploited to detect defects in the existing
code, just as was done in this article.u

Acknowledgment
The author sincerely thanks the
CrossTalk Editorial Board, Kasey
Thompson, Piyush Jain, Saravana Prasad,
Thomas George, and Lilly Vasanthini for
their comments on earlier versions of this
article.

References
1. McConnell, Steve. Professional Soft-

ware Development. Boston: Addison-
Wesley, 2003.

2. Ploski, Jan, et al. “Research Issues in
Software Fault Categorization.” ACM
SIGSOFT Software Engineering
Notes 32(6): 6, 2007.

3. Answers.com. “Example Is Better
Than Precept.” 2008 <www.answers.
com/topic/example-is-better-than-pre
cept>.

4. Laitenberger, Oliver, and Jean-Marc
DeBaud. “An Encompassing Life
Cycle Centric Survey of Software
Inspection.” The Journal of Systems
and Software 50(1): 5-31, 2000.

5. Clayton, Richard, Spenser Rugaber,
and Linda Wills. On the Knowledge
Required to Understand a Program.
Proc. of the 5th Working Conference
on Reverse Engineering. Honolulu,
12-14 Oct. 1998: 69-78.

6. Gilb, Tom, Dorothy Graham, and
Susannah Finzi. Software Inspection.
Boston: Addison-Wesley, 1993.

7. Jalote, Pankaj, and M. Haragopal.
Overcoming the NAH Syndrome for
Inspection Deployment. Proc. of the
20th International Conference on
Software Engineering. Kyoto, Japan,
19-25 Apr. 1998: 371-378.

Note
1. BDs are so named not because they

are introduced as a by-product of
some activity, but because they are
detected as a by-product of an activity.

About the Author

D.T.V. Ramakrishna
Rao is a senior technical
architect at Infosys Tech-
nologies Limited, in Ban-
galore, India. He has 14
years of experience in

industrial software development with a
primary focus on building high-end net-
working systems. He has published 10
papers in networking and defect analysis.
He holds a master’s degree in computer
science from the Indian Institute of
Technology in Kanpur, India.

Infosys Technologies Limited
44 Electronics City, Hosur RD
Bangalore – 560 100
India
Phone: 91-80-41166508
Fax: 91-80-28521695
E-mail: ramakrishnadtv@

infosys.com

May 4-6
Sea – Air – Space 2009
National Harbor, MD
www.seaairspace.org

May 4-7
SATURN 2009 Conference

Pittsburgh, PA
www.sei.cmu.edu/architecture/

saturn/2009

May 4-8
Software Testing Analysis & Review

Orlando, FL
www.sqe.com/stareast

May 11-12
2009 IEEE International Conference on

Technologies for Homeland Security
Waltham, MA

www.ieeehomelandsecurity
conference.org

June 1-4
DoD Enterprise Architecture

St. Louis, MO
www.afei.org/brochure/9a05/

June 8-12
Better Software Conference & EXPO

Las Vegas, NV
www.sqe.com/bettersoftwareconf

June 15-19
SIGMETRICS/Performance 2009

Seattle, WA
http://conferences.sigmetrics.org/

sigmetrics/2009

June 28-July 3
21st Annual FIRST Conference

Kyoto, Japan
http://conference.first.org

2010
Systems and Software
Technology Conference

Salt Lake City, UT
www.sstc-online.org

COMING EVENTS

12 CROSSTALK The Journal of Defense Software Engineering March/April 2009

An SoS program, in government or
industry, can suffer severe integration

and run-time problems that can result in
costly rework, schedule overruns, and the
failure to achieve performance goals [1]. For
example:
• In 2005, NASA’s Demonstration of

Autonomous Rendezvous Technology
(DART) spacecraft collided with its tar-
get rather than achieving orbit, scuttling
a $110-million mission. NASA’s official
investigation cited a number of con-
tributing factors, including the failure to
uncover a number of design issues prior
to SoS integration [2].

• A year before the DART debacle, the
Ford Motor Company killed a new sup-
ply chain system—after spending four
years and about $400 million on its
development—and returned to a set of
“custom-written mainframe applica-
tions” for purchasing. “Poor perfor-
mance” was cited as the culprit [3].

• A few years before Ford’s loss, the self-
developed billing and claims-processing
system at Oxford Health Plans failed
miserably after deployment, triggering a
drop of more than $3 billion in the cor-
poration’s value. The system couldn’t keep
pace with the organization’s needs [4].
One significant underlying cause for

problems like these is a lack of attention to
quality attributes (such as interoperability,
sustainability, performance, and reliability1)
early in the development life cycle, when
their implications on the SoS architecture
can be dealt with more easily. A recent
study by the National Defense Industrial
Association found that one of the top
issues hindering the acquisition and suc-
cessful deployment of SoS is that “insuffi-
cient systems engineering is applied early in
the program life cycle, compromising the
foundation for initial requirements and
architecture development” [5].

The typical SoS context—where major
system and software elements have their
own architecture documentation created by
different contractors using diverse tools
and notations—makes it more difficult to
focus on quality attributes. In these con-
texts, program managers and SoS architects
need a way to promote consistency, clarity,
and completeness of quality attribute
requirements throughout the development
of the SoS.

This article describes a two-pronged,
uniform approach for the early identifica-
tion of quality attribute inconsistencies,
ambiguities, and gaps within SoS and sys-
tem architectures. Using an approach that
focuses on SoS quality attribute consider-
ations can produce benefits such as:
• Improved SoS architecture.
• Early identification of significant

architectural challenges and risks.
• Better communication between the

SoS, system, and software stakehold-
ers.

• More predictable integration of com-
ponent systems.

• More effective root cause analysis of
problem areas.
After defining the uniform approach,

we use a defense system illustration to
show how this uniform approach captures
considerations about reliability early in the
life cycle and influences risk management
throughout the SoS, system, and software
development.

Uniform Approach Described
The two-pronged, uniform approach
includes:
• A methodology to perform a first pass

identification of architectural risks2 at
the SoS level, using existing mission
threads that are augmented with quality
attribute concerns. This is provided
through a series of mission thread work-
shops (MTWs) and SoS architecture
evaluations. The results are organized
into a number of risk themes, and then

individual systems are associated with
these risk themes.

• Further evaluation of the problematic
constituent systems can be performed
using the augmented mission threads
from the SoS architecture evaluations
and employing an extension of the
Carnegie Mellon SEI Architecture
Tradeoff Analysis Method® (ATAM®)
for system and software architecture
evaluation (System and Software
ATAM)3.
This approach is based on successful

SEI methods and techniques for addressing
key quality attributes, their relationships, and
trade-offs at the software architecture level.
Two well-established and widely used meth-
ods are the SEI Quality Attribute Workshop
(QAW) and the ATAM. The QAW helps
acquirers and developers identify and char-
acterize the key quality attributes for a sys-
tem. The ATAM enables software develop-
ers and acquirers to evaluate software archi-
tecture against required quality attributes
and business/mission goals before the sys-
tem is actually developed. Over the past
decade, many DoD programs have used the
ATAM to evaluate their mission-critical
software architectures.

Through this approach, architectural
risks are identified early in the life cycle, pro-
moting more efficient and effective risk
management. As shown in Figure 1, the
MTW takes warfare vignettes, business/
mission drivers, mission threads, and SoS
architecture plans as input and produces
mission threads augmented with quality
attribute requirements and a set of SoS
architectural challenges. These augmented
mission threads and architectural challenges
should then be used in the development of
an SoS architecture. When the SoS architec-
ture is somewhat mature, the augmented
mission threads then serve as the basis for
an SoS architecture evaluation, which
uncovers SoS architecture risks and points
to individual systems that may pose difficul-
ties in meeting the quality attribute concerns

A Uniform Approach for System of
Systems Architecture Evaluation

For a large-scale system of systems (SoS), severe integration and run-time problems can arise due to inconsistencies, ambigu-
ities, and gaps in how quality attributes (such as reliability) are addressed in the underlying systems. This is exacerbated in
contexts where major system and software elements of the SoS are developed concurrently and oftentimes independently. Using
a defense system scenario, this article outlines a uniform approach for capturing quality attribute requirements as augmenta-
tions to mission threads early in the development process and for analyzing SoS, system, and software architectures against
these mission thread augmentations.

Michael Gagliardi, William G. Wood, John Klein, and John Morley
Software Engineering Institute

® The Architecture Tradeoff Analysis Method and ATAM
are registered in the U.S. Patent and Trademark Office by
Carnegie Mellon University.

A Uniform Approach for System of Systems Architecture Evaluation

March/April 2009 www.stsc.hill.af.mil 13

reflected in the mission threads. Although
the emphasis in these activities is firmly on
quality attributes, the evaluation often
exposes functional gaps, inconsistent
Concept of Operations, and process ambi-
guities. Then, through a System and
Software ATAM, architectural risks at the
system and software levels are identified.

Mission Thread Workshop
Mission threads are associated with one or
more warfare vignettes. A vignette describes
the overall environment, including the geog-
raphy; its own force structure and mission,
strategies, and tactics; and the enemy’s
forces, attack strategies, and tactics, includ-
ing timing.

A mission thread has been defined as
“sequence of activities and events beginning
with an opportunity to detect a threat or ele-
ment that ought to be attacked and ending
with a commander’s assessment of damage
after an attack” [7]. Our mission thread-
based example vignette is as follows:

An enemy tank platoon is threaten-
ing a lightly protected company and
comes into the field of view of an
unattended ground sensor (UGS),
which connects to and informs a
manned ground vehicle for com-
mand and control (MGVC2). An
MGVC2 identifies the enemy tanks.
The MGVC2 assigns an unmanned
missile launcher (UML) to engage
the tank platoon. The UML engages
and destroys the enemy. The
MGVC2 determines that the threat
has been eliminated, based on subse-
quent UGS signals.

The MTW is a facilitated process that
brings together SoS stakeholders to both
augment existing mission threads with qual-
ity attribute considerations that will shape
the SoS architecture and identify SoS archi-
tectural challenges. These stakeholders
include, but are not limited to, the following:
• Lead SoS architects (for the contractor

and program management office
[PMO]).

• Lead system and software architects
(for the contractors and PMO).

• Program managers (for the contractors
and PMO).

• Key representatives from integration
and test, requirements, users, mainte-
nance, installation, independent verifi-
cation and validation, modeling and
simulation, and other areas.
There are three main stages to the

MTW: 1) preparation, 2) execution, and 3)
roll-up and follow-up. In the preparation
stage, the SoS program manager develops

an overview presentation on the SoS mis-
sion/business drivers, and the SoS archi-
tect develops an overview presentation on
the SoS architecture plans. The facilitation
team meets with the SoS program manag-
er and architect to plan the MTW, provide
feedback on the two presentations, reach
agreement on mission threads and types,
and identify stakeholders. In this first stage,
the facilitation team may need to decom-
pose warfare vignettes into activity-orient-
ed mission thread steps by considering:
• External actors, who may not be explic-

it in the vignette.
• Functionality and capability and their

distribution.
• Command structure.
• Manual versus automated activation.

During the execution stage of the MTW,
the SoS program manager delivers the pre-
sentation on the SoS business/mission dri-
vers, including the business/programmatic
context, the plan for development, as well as
high-level functional requirements, con-

straints, and quality attribute requirements.
The SoS architect then presents the SoS
architecture plans, including: key business/
programmatic requirements, key technical
requirements and constraints that will drive
architectural decisions, existing context dia-
grams, high-level SoS diagrams and descrip-
tions, development spirals, and an integra-
tion schedule.

The bulk of the MTW execution stage
is spent augmenting the mission threads
with quality attribute considerations and
identifying SoS architectural challenges
based on stakeholder inputs and the dia-
logue between the stakeholders and the
architects. During the augmentation, over-
arching quality attribute considerations—
as well as step-specific quality attribute
considerations for each quality attribute of
the SoS—are elicited and documented for
each mission thread. The architects can
also describe how the planned architecture
satisfies the quality attribute considera-
tions in each step for each mission thread

Mission Thread Element Augmentation for Reliability

An enemy tank platoon is threatening a
lightly protected company and comes
into the field of view of a UGS, which
connects to and informs an MGVC2.

UGS-MGVC2 connection fails one
second after connection; reconnects
after two minutes.

An MGVC2 identifies the enemy tanks. Takes too long (over five minutes) to de-
conflict and identify the enemy tanks.

The MGVC2 assigns a UML to engage
the tank platoon.

Communication transmissions to UML
are missing their deadlines.

The UML engages and destroys the
enemy.

Assigned UML fails to launch.

The MGVC2 determines that the threat
has been eliminated from subsequent
UGS signals.

Signals from UGS have ceased.
Communication is lost between the
MGVC2 and UGS.

MTW SoS Architecture
Evaluation

System and Software
ATAM

Input • Selected existing
mission threads

• Warfare vignettes
• SoS architecture

plans overview
• SoS

business/mission
drivers

• Augmented mission
threads

• SoS architecture
challenges

• SoS
business/mission
drivers

• SoS architecture
• System architecture

• SoS architecture
risks

• Problematic systems
identified with the
augmented mission
threads

• SoS and system
business/mission
drivers

• System
architectures

• Software
architectures

Output • Augmented mission
threads that reflect
quality attribute
considerations

• Architectural
challenges

• Issues and
questions
concerning the
mission threads

• SoS architecture
risks

• Problematic systems
identified with the
augmented mission
threads

• System architecture
risks

• Software
architecture risks

Business/Mission Drivers

Warfare Vignettes
Mission Threads

SoS Architecture Plans

Mission
Thread

Workshop

SoS
Architecture
Evaluation

SoS Architecture Risks

Problematic systems
identified with the

augmented mission
threads

Augmented Mission Threads
SoS Architecture Challenges

SoS Architecture
System Architecture

System and
Software

ATAM

System and
Software

Architectures

System and
Software

Architectural Risks

SoS and System Architecture(s) Development
Risk Management

Figure 1: A Uniform Approach for Identifying SoS Integration Problems Early

Mission Thread Element Augmentation for Reliability

An enemy tank platoon is threatening a
lightly protected company and comes
into the field of view of a UGS, which
connects to and informs an MGVC2.

UGS-MGVC2 connection fails one
second after connection; reconnects
after two minutes.

An MGVC2 identifies the enemy tanks. Takes too long (over five minutes) to de-
conflict and identify the enemy tanks.

The MGVC2 assigns a UML to engage
the tank platoon.

Communication transmissions to UML
are missing their deadlines.

The UML engages and destroys the
enemy.

Assigned UML fails to launch.

The MGVC2 determines that the threat
has been eliminated from subsequent
UGS signals.

Signals from UGS have ceased.
Communication is lost between the
MGVC2 and UGS.

MTW SoS Architecture System and Software

Business/Mission Drivers

Warfare Vignettes
Mission Threads

SoS Architecture Plans

Mission
Thread

Workshop

SoS
Architecture
Evaluation

SoS Architecture Risks

Problematic systems
identified with the

augmented mission
threads

Augmented Mission Threads
SoS Architecture Challenges

SoS Architecture
System Architecture

System and
Software

ATAM

System and
Software

Architectures

System and
Software

Architectural Risks

SoS and System Architecture(s) Development
Risk ManagementTable 1: Mission Thread Elements Augmented by Reliability Requirements

Reinforcing Good Practices

14 CROSSTALK The Journal of Defense Software Engineering March/April 2009

selected for the workshop. Table 1 (on the
previous page) shows some possible
requirements for reliability expressed as
augmentations on the steps in the example
mission thread presented earlier.

The process used in the execution stage
fosters a dialogue between architects and
stakeholders regarding the issues and chal-
lenges that are captured during the work-
shop. In the context of our example mission
thread, there could be issues such as:
• The connection with the UGS and the

MGVC2 is dynamic—that is, the sensor
must announce the presence of an
object of interest when it senses one.
More than one MGVC2 platform may
be notified by the UGS, and a mecha-
nism is needed to choose which plat-
form will act on the data.

• The connection between the UML and
the MGVC2 is also somewhat dynamic,
but the MGVC2 may have an indirect
connection to the UML.

• In some cases, the MGVC2 may not
have the authority to engage a UML, but
will have to report to a higher level com-
mand post.

• The missiles are guided in flight by the
MGVC2, which may not have a direct
connection.

• The tracks are created for the regional
fusion engine, which may not be the
MGVC2 and is not directly represented
in the mission thread.
In the third and final stage, roll-up and

follow-up, two reports are produced from
the activity in the execution stage and
answers to action items are assigned in

that stage. One report includes the quality
attribute considerations for each step of
each mission thread selected for the MTW
and overarching quality attribute consider-
ations for each mission thread. The other
report describes the SoS architectural
challenges.

Experience executing QAWs (the basis
of MTWs) shows that the most effective
sessions bring together no more than 20
stakeholders for one to two days. This
allows each MTW to tackle the augmenta-
tion of just one or two mission thread
types; through a series of MTWs, the vari-
ety of mission thread types involved in an
SoS are examined. At the end of the series
of MTWs, an annotated summary briefing
rolls up SoS architectural challenges and
strengths, non-architectural issues (if any
are uncovered), and recommendations.

MTWs have been used in conjunction
with two large, complex DoD SoS pro-
grams. These MTWs assist architects in
identifying SoS architecture challenge areas
and the areas to focus their prototyping and
proof-of-concept activities.

SoS Architecture Evaluation
In conjunction with the MTW, the SoS
architecture evaluation provides a first pass
identification of SoS architectural risks and
quality attribute inconsistencies across the
constituent systems. An SoS architecture
evaluation:
• Uses outputs of the MTWs, including

augmented mission threads and SoS
architecture challenges.

• Incorporates the expertise of a trained

evaluation team and SoS stakeholders,
including the SoS and system architects.

• Probes architecture at the areas where
the systems interact to identify risks.

• Organizes the individual risks into risk
themes that can be comprehended (and
mitigated later) by program manage-
ment.

• Assesses the sufficiency of architecture
documentation.

• Identifies potentially problematic sys-
tems for focused follow-on evaluations
using the specific augmented mission
threads.
In the SoS architecture evaluation, the

SoS architect walks each augmented mis-
sion thread through the SoS architecture,
describing how the SoS architecture and
constituent system architectures satisfy the
thread’s functional and quality attribute
considerations. For each step in the mis-
sion thread, the evaluation team and stake-
holders probe the SoS architecture (and
system architecture, if necessary) with a
focus on the quality attribute augmenta-
tions and SoS challenges; risks, issues, and
strengths are also identified.

At the end of each evaluation, the
evaluation team delivers an outbrief that
includes SoS architectural risk themes and
strengths, non-architectural issues discov-
ered, an identification of potentially prob-
lematic systems, and recommended next
steps.

System and Software ATAM
As a follow-on to the SoS architecture eval-
uation in this approach, the System and
Software ATAM keys in on the problematic
systems identified. This evaluation uses the
augmented mission threads to examine the
system and software architecture and pro-
duces a set of software and system architec-
tural risks that trace back to the quality
attributes identified in the augmented mis-
sion threads. The System and Software
ATAM is built on the format and approach
of the ATAM.

Summary
Problems that do not surface until integra-
tion or deployment can have ruinous effects
on the cost, schedule, and performance of
SoS programs. Through the uniform
approach outlined in this article, the SoS
architects can use the augmented mission
threads as one input for SoS architecture
development. The augmented mission
threads can also be used to identify any SoS
architectural risks related to the quality
attributes needed to accomplish the mis-
sion/business objectives early in the life
cycle, promoting more efficient and effec-
tive risk management.

Mission Thread Element Augmentation for Reliability

An enemy tank platoon is threatening a
lightly protected company and comes
into the field of view of a UGS, which
connects to and informs an MGVC2.

UGS-MGVC2 connection fails one
second after connection; reconnects
after two minutes.

An MGVC2 identifies the enemy tanks. Takes too long (over five minutes) to de-
conflict and identify the enemy tanks.

The MGVC2 assigns a UML to engage
the tank platoon.

Communication transmissions to UML
are missing their deadlines.

The UML engages and destroys the
enemy.

Assigned UML fails to launch.

The MGVC2 determines that the threat
has been eliminated from subsequent
UGS signals.

Signals from UGS have ceased.
Communication is lost between the
MGVC2 and UGS.

MTW SoS Architecture
Evaluation

System and Software
ATAM

Input • Selected existing
mission threads

• Warfare vignettes
• SoS architecture

plans overview
• SoS

business/mission
drivers

• Augmented mission
threads

• SoS architecture
challenges

• SoS
business/mission
drivers

• SoS architecture
• System architecture

• SoS architecture
risks

• Problematic systems
identified with the
augmented mission
threads

• SoS and system
business/mission
drivers

• System
architectures

• Software
architectures

Output • Augmented mission
threads that reflect
quality attribute
considerations

• Architectural
challenges

• Issues and
questions
concerning the
mission threads

• SoS architecture
risks

• Problematic systems
identified with the
augmented mission
threads

• System architecture
risks

• Software
architecture risks

Business/Mission Drivers

Warfare Vignettes
Mission Threads

SoS Architecture Plans

Mission
Thread

Workshop

SoS
Architecture
Evaluation

SoS Architecture Risks

Problematic systems
identified with the

augmented mission
threads

Augmented Mission Threads
SoS Architecture Challenges

SoS Architecture
System Architecture

System and
Software

ATAM

System and
Software

Architectures

System and
Software

Architectural Risks

SoS and System Architecture(s) Development
Risk Management

Table 2: The Uniform Approach

A Uniform Approach for System of Systems Architecture Evaluation

March/April 2009 www.stsc.hill.af.mil 15

This approach involves performing a
series of MTWs and SoS architecture eval-
uations to identify inconsistencies, ambigu-
ities, and gaps across the constituent sys-
tems and at the SoS level, using existing
mission threads that are augmented with
quality attribute concerns. It also includes
further evaluation of problematic con-
stituent systems using the augmented mis-
sion threads in a system and software ver-
sion of the SEI ATAM. Table 2 summa-
rizes the way the methods are integrated
for analyzing SoS, system, and software
architectures against augmented mission
threads in order to expose technical risks at
an early stage of development when miti-
gation can be done cost-effectively.

By using this uniform approach—
focused on SoS quality attribute considera-
tions early in the development life cycle—
program managers and SoS architects can
realize an improved SoS architecture, iden-
tification of significant architectural chal-
lenges and risks at a time when it is less
costly to fix them, better communication
between SoS, system, and software stake-
holders, more predictable integration of
component systems, and more effective
root cause analysis of problem areas.u

Notes
1. A suitable list of SoS quality attributes

also includes backward compatibility,
testability, and usability.

2. A risk is a potentially problematic archi-
tectural decision indicating that the sys-
tem or SoS built from the architecture
may not completely satisfy one or more
business/mission goals.

3. The ATAM exposes architectural risks
that potentially inhibit the achievement
of an organization’s business goals. The
ATAM gets its name because it not only
reveals how well an architecture satisfies
particular quality goals, but it also pro-
vides insight into how those quality
goals interact with each other—how
they trade off against each other [6].

References
1. Office of the Under Secretary of De-

fense for Acquisition, Technology, and
Logistics. “Report of the Defense
Science Board Task Force on Develop-
ment Test and Evaluation.” May 2008
<www.acq.osd.mil/dsb/reports/2008
-05-DTE.pdf>.

2. Marshall Space Flight Center. “NASA
Report: Overview of the DART Mishap
Investigation Results – For Public Re-
lease.” 15 May 2006 <www.spaceref.
com/news/viewsr.html?pid=20605>.

3. Songini, Marc L. “Ford Abandons
Oracle Procurement System: Switches

Back to Mainframe Apps.” Computer-
world Software. 23 Aug. 2004 <www.
computerworld.com/software-topics/
erp/story/0,10801,95404,00. html>.

4. Hammonds, Keith H., and Susan Jack-
son. “Behind Oxford’s Billing Night-
mare: How a Misconceived System Cost
the Health-Care Giant Millions.”
Business Week. 17 Nov. 1997 <www.
businessweek.com/1997/46/b355
3148.htm>.

5. National Defense Industrial Association
Systems Engineering Division Task

Group Report. “Top Five Systems
Engineering Issues Within Department
of Defense and Defense Industry.” July
2006.

6. Clements, Paul, Rick Kazman, and Mark
Klein. Evaluating Software Architec-
tures: Methods and Case Studies.
Boston: Addison-Wesley Professional,
2001.

7. Naval Studies Board. C4ISR for Future
Naval Strike Groups. Washington, D.C.:
The National Academies Press, 2006.

About the Authors

John Klein is a senior
technical staff member in
the SEI’s Research, Tech-
nology, and System Solu-
tions Program. He does
research and consulting

on architecture-centric methods and tools
for developing, documenting, and evalu-
ating SoS and enterprise architectures.
Klein also assesses and improves the
architecture competence of individuals,
teams, and organizations. Klein has more
than 25 years experience in systems devel-
opment including sensors and weapons,
as well as collaboration systems.

Phone: (412) 268-4553
E-mail: jklein@sei.cmu.edu

John Morley is a mem-
ber of the operating staff
at the SEI. He has
reported on model-based
engineering, architecture-
centric engineering, and

service-oriented architecture for SEI
publications and has more than 20 years
experience in writing and editing scien-
tific and technical materials. Morley
recently co-wrote “Building Secure
Systems Using Model-Based Engineer-
ing and Architectural Models,” which
appeared in the September 2008 edition
of CrossTalk.

Phone: (412) 268-6599
Fax: (412) 268-5758
E-mail: jmorley@sei.cmu.edu

Michael Gagliardi has
more than 25 years expe-
rience in real-time, mis-
sion-critical software ar-
chitecture and engineer-
ing activities on a variety

of DoD systems. He currently works in
the SEI Research, Technology, and
System Solutions Program on the
Architecture-Centric Engineering initia-
tive, and is involved in the development
of architecture evaluation methods for
SoS architectures and system architec-
tures.

SEI
4500 Fifth AVE
Pittsburgh, PA 15213
Phone: (412) 268-7738
Fax: (412) 268-5758
E-mail: mjg@sei.cmu.edu

William G. Wood has
been a member of tech-
nical staff at the SEI for
more than 22 years.
During this time, he has
managed a technical pro-

gram and technical projects, and has
provided technical support to the pro-
gram development organization. Wood
is currently working in software architec-
ture with a number of clients. He has a
master’s degree in electrical engineering
from Carnegie Mellon University, and a
bachelor’s degree in physics from
Glasgow University, Scotland.

Phone: (412) 268-7723
Fax: (412) 268-5758
E-mail: wgw@sei.cmu.edu

Astatic analyzer is a program written
to analyze other programs for

flaws. Such analyzers typically check
source code, but there are analyzers for
byte code and binaries, too. Analyzers
for requirements or design are possible,
but most are focused on code and bina-
ries. At a minimum, analyzers report
the location and name of a possible
problem. Some analyzers have far more
capabilities. They may describe the
problem and possible attacks or failure
modes in-depth. They may detail the
data or control flow leading from the
source of values involved to the state-
ment where the failure may have mani-
fested or the value is passed to another
component. They may also suggest mit-
igations.

A vulnerability is any property of sys-
tem requirements, design, implementa-
tion, or operation that could be acciden-
tally triggered or intentionally exploited
and result in a failure. As described in
[1]: “A vulnerability is the result of one
or more weaknesses in requirements,
design, implementation, or operation.”
Because configuration, installation,
operation, and other system compo-
nents determine whether a certain code
construct may lead to failure, I speak of
weaknesses in the code, not vulnerabili-
ties. To reiterate, static analyzers report
weaknesses in software.

What Are Their Strengths
and Limitations?
Every static analyzer has a built-in set of
weaknesses to look for in code. Most
have some means of adding custom
rules. In contrast, testing requires test
cases or input data. Testing also requires
artifacts that are complete enough to be
executable, possibly with supporting dri-
vers, stubs, or simulated components.
Static analysis may be performed on
modules or unfinished code, although the
more complete the code, the more thor-
ough and accurate the analysis can be.

Analyzers are limited by the sophis-
tication of the reasoning in them. For
instance, some static source code ana-

lyzers do not handle function pointers
and few can deal with embedded
assembler code. Even if the models of
the programming language, compiler,
hardware, and other pieces used in exe-
cution are perfect, analyzers have the
same fundamental limitation as any
other logical system. They cannot solve
the halting problem or undecidable
problems. In practice, this need not be

a serious limitation. Important code
“should be so clearly correct that it
confuses neither human nor tools” [2].
Although running tests is straightfor-
ward, this same challenge of analysis
arises in developing tests to exercise a
particular property or module.

New tests must be developed when
new attacks or failure modes are discov-
ered. Static analyzers have some advantage
in this case. The weakness check need only
be added and validated once, then the ana-
lyzer is rerun on all code. Test generators
can give a similar advantage.

Most importantly, static analyzers
have the potential to find rare occur-

rences or hidden back doors. Since they
consider the code independently of any
particular execution, they can enumerate
all possible interactions. The number of
interactions tends to increase exponen-
tially, defying comprehensive static
analysis and test execution alike. Static
analysis can focus on the interaction
without testing’s need to re-establish ini-
tial conditions or artificially constrain
the system to produce the desired inter-
action. Worse, black-box testing cannot
realistically be expected to discover, let’s
say, a backdoor accessible when the user
ID is “JoshuaCaleb” since there are a
nearly infinite number of arbitrary
strings to test.

Testing and static analysis comple-
ment each other. Testing has the advan-
tage of possibly revealing completely
unexpected failures. Embedded systems
can be tested, even when it is utterly
impractical to analyze any software that
may be tucked away in a component.

Static Analysis’ Place in
Software Engineering
Static analysis is no panacea. Complex
and subtle vulnerabilities can always
defeat the reasoning in a static analyzer.
The utter lack of an important require-
ment, such as auditing or encryption,
cannot reasonably be deduced from
only the examination of post-produc-
tion artifacts. Software with no resilien-
cy or self-monitoring is open to errors
in installation or operation, but static
analysis can be one of the last lines of
defense against vulnerabilities.

Static analysis can be understood in
a continuum from sound to heuristic. A
sound analysis is 100 percent correct in
its judgments. If it reports a weakness,
a weakness definitely exists. If it
reports that a certain construct is okay,
then one is assured that a weakness is
not present. In some cases, a sound
analysis may not have enough informa-
tion to render a good/bad judgment.

Statistical correlation is an example
of heuristic analysis. For instance, an
open is usually followed by a close or

Static Analyzers in Software Engineering

Static analyzers can report possible problems in code and help reinforce the good practices of developers. This article contrasts
the strengths of static analyzers with testing and discusses the current state-of-the-art.

Dr. Paul E. Black
National Institute of Standards and Technology

16 CROSSTALK The Journal of Defense Software Engineering March/April 2009

“Most importantly,
static analyzers have
the potential to find
rare occurrences or
hidden back doors.
Since they consider

the code
independently of
any particular

execution, they can
enumerate all

possible interactions.”

March/April 2009 www.stsc.hill.af.mil 17

resources are typically locked within a
critical section. Such rules may be
derived automatically through machine
learning of existing code. But heuristic
analysis is susceptible to false alarms
(false positives) or missing actual weak-
nesses (false negatives).

Analysis may be a combination of
sound reasoning and heuristic tech-
niques. Complete analysis of the termi-
nation conditions of every loop or pos-
sible states of all combinations of vari-
ables may be impractical, so most ana-
lyzers use algorithms that are not pure-
ly sound or purely heuristic. In addi-
tion, most analyzers are a system of
analytic engines; examples are data flow,
loop termination, value propagation,
control flow, or property recognition.

Work from the June 2008 Static
Analysis Tool Exposition [3, 4] shows
that current analyzers vary widely. An
analyzer may produce few false alarms
for some weaknesses, but many false
alarms for other weaknesses. Likewise,
the rate of missed weaknesses differs
greatly. Analyzers also only cover a sub-
set of documented weaknesses [5].
Thus, the most comprehensive static
analysis would result from a carefully
used combination of analyzers. Other
factors, such as cost and analyst support,
must go into selecting the most appro-

priate static analyzer(s) for each situa-
tion. The Software Assurance Metrics
and Tool Evaluation (SAMATE)
Reference Dataset [6] has thousands of
sample programs that may help such
evaluation.

Static analyzers should be a key part of
every software development process.u

References
1. “Source Code Security Analysis Tool

Functional Specification Version 1.0.”
National Institute of Standards and
Technology (NIST), Special Publi-
cation 500-268. May 2007 <http://
samate.nist.gov/docs/source_code_
security_analysis_spec_SP500-268.
pdf>.

2. Holzmann, Gerard J. “Conquering
Complexity.” Computer 40 (12): 111-
113, Dec. 2007.

3. NIST. “Static Analysis Tool Expo-
sition.” 7 July 2008.

4. NIST. ACM SIGPLAN. Proc. of the
Static Analysis Workshop. Tucson,
AZ. 12 June 2008 <http://samate.
nist.gov/index.php/SAW>.

5. MITRE. “Common Weakness Enu-
meration.” 25 Nov. 2008 <http://cwe.
mitre.org>

6. NIST. “NIST SAMATE Reference
Dataset.” Jan. 2006.

About the Author

Paul E. Black, Ph.D.,
has nearly 20 years of
industrial experience in
software for integrated
circuit design and verifi-
cation, assuring software

quality and managing business data pro-
cessing. He now works in the Software
Quality Group, Information Technology
Laboratory of the NIST and edits the
online Dictionary of Algorithms and
Data Structures. He has a doctorate in
computer science from Brigham Young
University and has published on topics
including software testing, configuration
control, networks and queuing analysis,
formal methods, software verification,
quantum computing, and computer
forensics. Black is a member of the
Association for Computing Machinery,
IEEE, and the IEEE Computer Society.

NIST
100 Bureau DR Stop 8970
Gaithersburg, MD 20899-8970
Phone: (301) 975-4794
Fax: (301) 975-6097
E-mail: paul.black@nist.gov

Resilient Software
September/October 2009

Submission Deadline: April 10, 2009

21st Century Defense
November/December 2009

Submission Deadline: June 12, 2009

Modeling and Simulation
January/February 2010

Submission Deadline: August 14, 2009

CALL FOR ARTICLES

Please follow the Author Guidelines for CrossTalk, available on the Internet at <www.stsc.hill.af.mil/crosstalk>.
We accept article submissions on software-related topics at any time, along with Letters to the Editor and BackTalk.

We also provide a link to each monthly theme, giving greater detail on the types of articles
we're looking for at <www.stsc.hill.af.mil/crosstalk/theme.html>.

If your experience or research has produced information that could be useful
to others, CrossTalk can get the word out. We are specifically looking for
articles on software-related topics to supplement upcoming theme issues.
Below is the submittal schedule for three areas of emphasis we are looking for:

Static Analyzers in Software Engineering

18 CROSSTALK The Journal of Defense Software Engineering March/April 2009

For this article, an inspection is defined as
a preemptive systematic peer review of

work products by three to five trained indi-
viduals (e.g., stakeholders) using a well-
defined and documented process. The goal
of peer review is to reduce project rework
cost and raise product quality and return on
investment (ROI) by detecting and removing
(non-trivial) defects as early as possible in the
software development life cycle (SDLC) or
closest to the points of defect insertion.

The objective of this article is to explore
upper (middle and senior) management’s
software inspection responsibilities and how
computerized inspection tool features can
improve meeting those responsibilities for
consistent inspection success.

Ten Common Inspection Pitfalls
Figure 1 identifies ten common inspection
pitfalls that cause software inspections to fail.
It is the responsibility of upper management
to solve or prevent each pitfall. These pitfalls
were the focus of our January 2008 [1]
CrossTalk article. This article is a follow-
up and in the future we expect to explore
inspection tool features in more depth than is
discussed here.

Having an adequate SDLC infrastructure
is a prerequisite for inspection success.
Specifically, company culture needs an
enabling SDLC infrastructure where the dis-
ciplines of planning, scheduling, data collec-
tion, monitoring, and tracking are already
ingrained in the culture. The CMM® and its
successor CMMI® identify these disciplines
as Level 2 management skills. Inspections are
dependent upon these underlying disciplines
and thus require Level 2 management skills as
the foundation for success. We have
observed that companies typically encounter
multiple inspection pitfalls, any one of which
can result in not achieving the lasting benefits
that inspections can provide when properly
implemented.

This article addresses management’s
responsibilities in eliminating the pitfalls and
explains how inspection tools can help make
this easier to achieve.

Management’s Understanding of
Inspections
Prevention of the inspection pitfalls shown
in Figure 1 requires management to first
understand—and then fulfill—their
inspection responsibilities. Typically when

project inspections are introduced, the
focus on management’s critical role is
either overlooked or not given the attention
required. Just as inspection practitioners
(inspectors) receive training on inspection
process execution, management needs
complementary training that focuses on
identifying and achieving their inspection
responsibilities.

The cost and schedule impact of inspec-
tions are primarily borne by the require-
ments, design, and coding areas, although
these areas realize some of the reduced cost
and higher-quality inspection benefits. The
majority of inspection benefits are realized in
testing and maintenance, requiring manage-
ment to have a life-cycle view of the project.
Therefore, management at all levels and
across all development phases (including
upper management in areas that will not use
inspections), require inspection education.

Management instruction on how to man-
age inspections occurs prior to practitioner
training and focuses on the responsibilities of
management for achieving inspection suc-
cess, specifically:
• Prevention of the 10 identified inspec-

tion pitfalls.
• Effective use of management support

tools.

Management’s Inspection
Responsibilities
There are seven stages for successfully man-
aging inspections, which are identified in
Figure 2. These stages are:
• Stage 1: Project Planning and Stage 2:

Savings Estimation. Management iden-
tifies the number of inspections required
by the project, their cost, and the estimat-
ed net project savings from implementing
the inspections. These two stages occur
prior to conducting any project inspec-
tions.

• Stage 3: Commitment. Also occurring
prior to conducting any project inspec-
tions, management establishes and incor-
porates inspection planning and control

Management’s Inspection Responsibilities
and Tools for Success

There are many pitfalls that cause software inspections to fail. This article addresses management’s critical role in preventing
these pitfalls to attain successful inspections. In addition to meeting their responsibilities, management needs a comprehensive
computerized set of tools to support their efforts. By carrying out their responsibilities—supported by inspection-specific
tools—management will be better equipped to implement sustained successful project inspections that consistently reap the ben-
efits of lower project cost and high product quality.

Roger Stewart and Lew Priven
Stewart-Priven Group

® CMM and CMMI are registered in the U.S. Patent and
Trademark Office by Carnegie Mellon University.

1
SDLC

Infrastructure

2
Management
Understanding

3
Management
Planning Tools

5
Inspector Tools
with Process
Training

4
Time for
Inspections
in Schedule

6
Monitoring,
Tracking, and
Measurement

Tools

7
Training
Refresher

8
Inspection
Champion

9
Rapid Project
Training

10
Inspection Process
Capture Tool

Each Pitfall Must be Resolved by Management

S
u
cc
es
sf
u
lI
n
sp
ec
ti
o
n
Im
p
le
m
en
ta
ti
o
n

Figure 1: Managing Software Inspection Pitfalls

March/April 2009 www.stsc.hill.af.mil 19

procedures into the project’s plans.
Elements of the commitment stage are
described later in the article.

• Stage 4: Execution. Management’s
principal responsibility in this stage is to
provide inspection tools that facilitate
correct and consistent (repeatable) exe-
cution of inspections by teams, organi-
zations, and locations supporting their
project. Additionally, these inspection
tools should automate the collection of
inspection data for later monitoring,
tracking, and measurement of inspec-
tions results.

• Stage 5: Monitoring. Management
assesses the interim inspection process
conformance and results. If either
appears questionable, then consultation
with the inspection team leader may
reveal that a partial or full reinspection is
needed before further time is invested
investigating and fixing the potential
problems that have been uncovered.
This stage also provides early identifica-
tion of potential defect-prone areas and
the need for improvement to inspection
materials, team selection, and inspection
process adherence.

• Stage 6: Tracking. After each inspec-
tion exit, individual inspection results are
collected and consolidated into multiple
inspection totals used for tracking to-
date project savings against the stage 2
savings estimate. Tracking also includes
the ongoing trend analysis of defect rea-
son and origin metrics collected during
inspections, which are used for future
defect prevention improvements to
development processes.

• Stage 7: Measurement. This stage
occurs throughout the development life
cycle, providing for evaluation of early
defect removal by inspections, defect
removal by subsequent testing, and any
other means of defect removal (e.g., pre-
test automated code analysis tools). This
stage also provides for the evaluation of
the effectiveness of the inspection
implementation for pre-test defect
removal at or close to the points of
insertion. It is also a means to assess
progress toward the defect removal
goals recorded in the project’s quality
plan (described later).
These stages should not be confused

with the seven inspection steps typically asso-
ciated with performing inspections [2], which
occur during the execution and monitoring
stages of management’s inspection responsi-
bilities (see Figure 2).

With this understanding of manage-
ment’s responsibilities, let’s take a detailed
look at how a set of inspection management
tools might be used.

Management Inspection Tools
As previously stated, without management
tools designed for each inspection stage and
integrated with each other to build upon
inspection information collected in earlier
stages, management will be challenged to
meet their inspection responsibilities and
achieve project success.

Figure 3 identifies what a set of com-
puterized inspection tools might consist of.
The tools shown are grouped according to
the four timeframes where they would be
used:
• Before Any Inspections (during project

planning).
• During Inspections (execution and

monitoring).

• After Each Inspection (tracking).
• Throughout Development and Testing

(measurement).
The legend in Figure 3 shows the associa-
tion of each tool with the inspection stage
they apply to (Figure 2), whether the tool is
for use by management or by inspection
practitioners, and where the three tool-aided
decision points are for proceeding with an
inspection.

Inspection Tool Use
Before Any Inspections
During the first stage (project planning), a
planning counter tool should be used to
compute the number of inspections to be
conducted during a project, the estimated

Management’s Inspection Responsibilities and Tools for Success

Understanding
the Seven Stages
of Effective

Inspection Management

PP SE

Co

Ex

Mo

Tr

Me

1. Project Planning 2. Savings Estimation

3. Commitment

4. Execution

5. Monitoring

6. Tracking

7. Measurement

Before Any Inspections

During Inspections

After Each Inspection

Inspection Steps
1. Planning
2. Overview
3. Preparation
4. Inspection Meetings
5. Analysis
6. Rework
7. Follow Up

Stage Timeframes

Figure 2: Stages of Management’s Inspection Responsibility

Management
Planning Tools

(Project Planners)

Execution Tools
– one set per inspection–

(Inspection Leader with Team)

Monitoring and
Tracking Tools
(Management)

Before Any Inspections During Inspections After Each Inspection

Inspection
Planning
Counter

Project
Savings
Estimator

1

2

Inspection
Preparation

Tool

Inspection
Meeting Log

Tool

Analysis
Tool

4

4

4

5

5 6

6

ROI Calculators
– Requirements
– Design
– Code

Aggregate
Results

Calculators

7 Defect Removal Measurement Tool

Inspections Testing Other

Throughout Development and Testing

Legend
Management Stage Management Use Inspector Use Go/No Go Decision

Figure 3: Computerized Inspection Tool Use

Reinforcing Good Practices

20 CROSSTALK The Journal of Defense Software Engineering March/April 2009

number of defects to be removed, and the
projected cost for conducting project
inspections to find and fix those defects.

During the savings estimation stage, a
savings estimator tool would then use the
planning counter tool output along with
historical data and industry data to estimate
the net savings (or cost) the project would
realize (from the inspections and the result-
ing reduced rework and testing). Using this
data, management can now make an
informed decision whether to employ
inspections.

Our experience is that few project man-
agers will really commit to inspections
without knowing the net savings benefit
from implementing inspections. Few orga-
nizations (if any) know how to compute
their true inspection cost and, more impor-
tantly, accurately estimate their net project
savings from implementing inspections as a
primary means of raising product quality
and lowering both development and main-
tenance costs. Using both planning counter
and savings estimator tools can provide

management with the ability to compute
the net project savings estimate.

Computerized inspection tools are a
critical aid to management for both of the
first two stages. Furthermore, if these tools
are parameterized to accept historical
enterprise data and possible future devel-
opment and testing profiles, then manage-
ment has the additional flexibility to exam-
ine what-if scenarios that lead to making an
informed decision for their project to use,
or not use, inspections. This information
can also be used to sell or defend their deci-
sion, as needed.

The commitment stage—performed
prior to conducting any project inspec-
tions—includes the following responsibili-
ties:
• Conveying a strong net-savings mind-

set (as opposed to a cost focus) so often
missing from projects trying to do
inspections.

• Securing buy-in from upper manage-
ment across all project areas (e.g.,
requirements, design, code, and test).

The estimated net savings output of a
savings estimator tool is ideal for accom-
plishing these responsibilities.

The other elements of inspection com-
mitment responsibilities can be accom-
plished without additional inspection tools
by:
• Establishing a quality plan with quan-

tifiable defect removal goals for each
development phase (requirement defin-
ition through testing and customer use).

• Developing project plans that contain
individual inspection schedules.

• Developing inspection budgets and/or
setting up cost accounts for tracking
inspection cost.

• Scheduling upper management inspec-
tion awareness classes.

• Securing rapid practitioner training that
doesn’t have delays between multiple
practitioner classes (a characteristic of
many company training departments).

• Employing an inspection methodology
(see [1]) that resolves all inspection pit-
falls in addition to accomplishing both
management and practitioner inspection
training.
Another aspect of management com-

mitment is to provide an inspection envi-
ronment that facilitates inspection practi-
tioners in attaining the full quality and cost
savings benefits of inspections. To accom-
plish this, an inspection tool set should be
obtained for practitioners that:
• Assists inspector adherence to both the

inspection process [2] and performance
limits that characterize successful
inspections.

• Provides warnings where proceeding to
the next inspection step could be risky.

• Collects complete and consistent inspec-
tion data for inspection monitoring and
savings tracking.

• Provides a snapshot report for monitor-
ing inspection process adherence and
interim pre-fix inspection results.

• Provides defect metrics for the post-
inspection pursuit of development
process improvements for future defect
prevention.

During Inspections
Managers of inspection practitioners do
not attend inspection meetings, but man-
agement needs the capability to monitor
interim results at the conclusion of inspec-
tion meetings (step 4 in Figure 2). This
capability must be uniform and repeatable
regardless of what team, organization, or
location is conducting project inspections.

Ideally, a one-page snapshot from the
tool output of the inspection analysis step
will provide management with the data
needed to meet their inspection monitoring

Inspection Management
Stages 1, 2, 3

Project Planning
Savings Estimation
Commitment

Planning
Counter

Savings
Estimator

Stage 5

Inspection Monitoring

Analysis
Tool

Stage 6 Stage 7

Measurement for
Inspection and Test

Defect Removal
Measurement Tool

Number of
project
inspections,
hours to
conduct
inspections,
and fix defects.

Cost of using
vs. not using
inspections;
net project
savings.
Decision: Use
vs. don’t use
inspections

Summary of product
problems found,
inspection metrics,
and warnings if
inspection
performance limits
exceeded.
Decision: Proceed
or partial or full
reinspection

Number of defects
found/fixed/verified;
inspection cost,
net savings, ROI,
and defect density.

To-Date Totals:
Consolidated net
savings, ROI, and
defect density by
requirement design,
and code inspections;
plus trend analysis
graphs for defect
reason, origin,
and severity.

Consolidated defect
discovery counts by
phase from testing,
inspection, and other
activities; compares
quality goals to defect
removals, provides
inspection effectiveness
calibration for
release-to-release and
organization-to-
organization from
defect removal phases.

Inspection Data Tracking

Aggregate
CalculatorsCalculatorsROI

*
Ti

m
ef

ra
m

e

* See Figure 2 legend

Figure 4: Overview of Management’s Inspection Tool Features

Inspection Management Stage 4

Inspection Execution

Meeting Log
Tool (2)

Used to update
inspection meeting
information at
inspection exit to
confirm identified
defects have been
fixed, and for any
updates to defect
classifications.

Supports leader in
determining if inspection
team is adequately
prepared
(time, material,
questions).

Decision: Has
inspector foundation
been established
to proceed or
complete preparation?

Preparation
Tool

Collect consistent and
complete problem data,
including metrics to
support development
process improvement,
and defect classification
totals.

Tool also used later at
inspection exit to
confirm that identified
defects have been fixed.

Meeting Log
Tool (1)

Identifies areas
where inspection
performance
limits may be
compromised.

Summary of product
problems found,
inspection metrics
and improvements
for next inspection.

Analysis
Tool

Figure 5: Summary of Practitioner Inspection Tools

Management’s Inspection Responsibilities and Tools for Success

March/April 2009 www.stsc.hill.af.mil 21

responsibility. This would include identify-
ing where inspection performance thresh-
olds have been exceeded. This will assist
management in determining whether a par-
tial or full reinspection is needed.
Inspection performance thresholds might
include the number of lines inspected,
inspection meeting length, preparation
rate, inspection rate, number of inspectors,
number of inspectors with adequate
domain knowledge and language knowl-
edge, adequacy of inspection materials to
meet inspection entry criteria, and adequa-
cy in individual inspector preparation.
While some threshold violations may be
suspected or possibly known prior to an
inspection meeting (e.g., preparation rate),
they should also be included on a post-
inspection meeting report for management
to get the complete picture on whether to
allow the inspection to move forward into
rework (step 6 in Figure 2) or whether
some form of reinspection is needed.

After Each Inspection
The tracking stage occurs immediately upon
completing each inspection (i.e., exiting
inspection step 7 in Figure 2). Inspection
results are consolidated, typically by inspec-
tion type (e.g., requirements, design, code) to
provide management up-to-date insight into
project net-savings and ROI.

Other inspection metrics like defect den-
sity and defect fix counts can provide an early
warning of defect-prone areas and develop-
ment process weak spots. Consolidating
post-inspection data also provides insight
into the level of inspection participation by
each development area (e.g., requirements)
across the project, which can be compared
with the planned number of inspections
computed during the project inspection plan-
ning stage.

Throughout Development and Testing
Finally, there needs to be a means to calibrate
whether a project’s inspection objective to
find and fix defects close to their point of
insertion is being achieved. Or, to present
this idea as a question: Is the project’s inspec-
tion implementation improving its early
defect removal ability from release-to-release,
or has defect removal degraded and (in turn)
bogged down testing?

To address this question, quality goals for
early defect removal should be established
(during planning) that are similar to the typi-
cal profile of defect insertion, sometimes
referred to as “defect potentials” [3]. A TRW
study found that 80 percent of product
defects are inserted prior to coding (52 per-
cent during requirements and 28 percent dur-
ing design) [4]. The project goals for defect
removal should strive to remove defects at

the same rate as they are being inserted into a
product (inspections were designed for this).
Defect removal goals should be established
for each development phase and recorded in
the project’s quality plan.

To measure the effectiveness of inspec-
tions, actual defect removal data collected
from each development phase should be
compared to the quality plan goals for early
defect removal. To accomplish this, a defect
removal measurement tool should be
employed that is designed to collect, on a
phase-by-phase basis, the:
• Current or past defect removal profile.
• Defect insertion (potentials) profile.
• Project defect removal goals.
• Actual defect removal metrics from

inspections, testing, and any other activi-
ties.

The defect removal measurement tool could
then compare the phase-by-phase defect
removal goals versus actual defect removals
so management can track release-to-release
goal attainment or degradation. The actual
defect removal phase profile (from a release)
is then used to help set the defect removal
goals for the next release.

Inspection Tool Features
Figure 4 provides an overview of the key fea-
tures previously discussed that management
inspection tools should possess.

Summary
Inspections can live up to their potential and
be embraced by the development communi-
ty if:
• Inspections are integral to a well-defined

SDLC infrastructure, supported by upper

management in each phase of develop-
ment.

• Computerized management tools are
available to assist in planning project in-
spections and estimating net project sav-
ings before commitment to inspections.

• Computerized management tools are
available for monitoring inspection
process conformance, tracking resulting
benefits for multiple inspections, and
measuring (calibrating) the actual defect
removal effectiveness of inspections.

• Project management and inspection
practitioners are provided with training
tailored to their unique inspection
responsibilities.

• Computerized practitioner tools are avail-
able to guide inspection teams for consis-
tent, correct, and repeatable inspection
execution (as shown in Figure 5), and to
be the basis for management monitoring,
tracking, and measurement phase respon-
sibilities.u

References
1. Priven, Lew, and Roger Stewart. “How to

Avoid Software Inspection Failure and
Achieve Ongoing Benefits.” Cross-
Talk Jan. 2008.

2. Software Engineering Standards Com-
mittee of the IEEE Computer Society.
“IEEE Standard for Software Reviews,
Section 6. Inspections.” IEEE Std. 1028-
1997, 1997.

3. Jones, Capers. “Measuring Defect Po-
tentials and Defect Removal Efficiency.”
CrossTalk June 2008.

4. McGraw, Gary. “Making Essential
Software Work.” Cigital, Inc. Mar. 2003.

About the Authors

Lew Priven is co-
founder and a managing
director of the Stewart-
Priven Group. He is an
experienced executive
with a management and
technical background in

system and software development, soft-
ware quality training, management devel-
opment training, and human resource
management. Priven has a master’s
degree in management from Rensselaer
Polytechnic Institute and a bachelor’s
degree in electrical engineering from
Tufts University.

Roger Stewart is co-
founder and a managing
director of the Stewart-
Priven Group. He is an
experienced lead systems
engineer and program
manager in both govern-

ment and commercial systems, including
systems engineering, software develop-
ment, system integration, system testing,
and process improvement. Stewart has a
bachelor’s degree in mathematics from
Cortland University.

The Stewart-Priven Group
7962 Old Georgetown RD STE B
Bethesda, MD 20814
Phone: (865) 458-6685
Fax: (865) 458-9139
E-mail: spgroup@charter.net

22 CROSSTALK The Journal of Defense Software Engineering March/April 2009

Software Program Managers Network
(SPMN) Critical Software Practices
www.spmn.com/16CSP.html
The SPMN developed Critical Software Practices to specifically
address underlying cost and schedule drivers that have caused
many software-intensive systems to be delivered over budget,
behind schedule, and with significant performance shortfalls.
These practices are the starting point for structuring and
deploying an effective process for managing large-scale software
development and maintenance. Together, they constitute a set
of high-leverage disciplines that are focused on improving a pro-
ject’s bottom line. They may be tailored to the particular cul-
ture, environment, and program phase.

Making the Business Case for Software
Assurance Workshop
www.sei.cmu.edu/community/BCW _Proceedings.pdf
Last September, many of the software industry’s best and bright-
est met at Carnegie Mellon University for SEI’s Making the
Business Case for Software Assurance Workshop. The goal was to
have researchers and practitioners from the fields of software engi-
neering, system engineering, software security, and software assur-
ance exchange ideas and their experiences in support of a business
case for software assurance. This comprehensive document cap-
tures the topics presented and discussed, including measurement,
process and decision making, legal issues, globalization, risk, and
organizational development. Also included is the keynote address
from longtime CrossTalk contributor Joe Jarzombek.

Workshop on the Evaluation of Software
Defect Detection Tools
www.cs.umd.edu/~pugh/BugWorkshop05/
Learn more about the topics discussed—and read the papers
presented—at this gathering of researchers and developers of
software defect detection tools. Topics included defect types,
defect categorization, defect prioritization, false positives, static
and dynamic analysis techniques, defect database mining, defect
tool interface issues, and post-deployment defect detection.

Source Code Security Analysis Tool
https://samate.nist.gov/docs/source_code _security _analysis _
tool _spec _01 _29 _07.pdf
This document—from the National Institute of Standards and
Technology in conjunction with the Department of Homeland
Security—specifies the functional behavior of one class of soft-
ware assurance tool: the source code security analyzer. Because
the majority of software security weaknesses today are intro-
duced at the implementation phase, a specification that defines
a “baseline” source code security analysis tool capability can
help software professionals select a tool that will meet their soft-
ware security assurance needs.

The Software Practices Lab
www.cs.ubc.ca/labs/spl
Based at the University of British Columbia, the Software
Practices Lab is a group of researchers with the shared goals of
improving software development practices, making real-world

software development more productive, and producing better sys-
tems. Projects and papers on their Web site explore all parts of the
software life cycle and apply a wide range of techniques, includ-
ing programming environments, meta programming, scalable
source analysis, software evolution support, programming lan-
guage design and implementation, and case study development.

Software Inspections
www.methodsandtools.com/archive/archive.php?id=29
Software inspection has been around for more than 35 years,
but some are still not convinced of its value. In this article from
Methods and Tools magazine, Ron Radice of Software
Technology Transition shares his experiences with successful
inspections and explains why they are an invaluable tool. Radice
explores the value of software inspections independent of soft-
ware development standards, the role of programmers in caus-
ing defects, the objective of reducing Cost of Quality during
inspections, inspection effectiveness and efficiency, roles and
tasks during an inspection, minimally staffed inspection teams,
and what lessons can be learned from both successful and failed
inspection experiences. Radice also answers questions regarding
whether software inspection can replace testing and if software
inspection will become obsolete.

Effective Software Sizing
www.pmforum.org/library/papers/2007/PDFs/Galorath-407.pdf
As most software professionals know, software size directly
relates to development effort: The more accurate your size esti-
mate is, the more accurate cost and schedule estimates will be.
But despite all the current IT monitoring of schedules and bud-
gets, project overruns are alarming. Past CrossTalk contrib-
utor Dan Galorath examines both the problems in estimating
software size—and the solutions. What are the keys to achiev-
ing accurate size estimates? What are you trying to estimate?
How will you measure your project? What is the difference
between total size and effective size? Since single point values
don’t tell the whole story, how do you express uncertainty?
These questions are asked and answered by Galorath, who also
examines the estimation techniques of expert judgment, Delphi
analysis, analogy, and database comparison, and provides a case
study showing these sizing techniques in action.

The National Centers for Systems of
Systems Engineering (NCSOSE)
www.eng.odu.edu/ncsose
NCSOSE is a research center established to lead and facilitate
academia, government, and industrial organizations in resolving
problems, developing technologies, and directing research relat-
ing to major issues in the field of systems of systems (SoS) engi-
neering. Engineering of these new higher-order metasystems
must be capable of maximizing the SoS performance, as
opposed to individual performance of subordinate subsystems
or peer systems. NCSOSE is dedicated to the realization of the
theory, methods, and practice necessary for success in the
emerging environment for the design, analysis, operation, main-
tenance, and transformation of SoS.

WEB SITES

Departments

March/April 2009 www.stsc.hill.af.mil 23

When I first started programming, it
never occurred to me to think

about the size of the software I was
developing. This was true for several rea-
sons. First of all, when I first learned to
program, software had a tactile quality
through the deck of punched cards
required to run a program. If I wanted to
size the software, there was something I
could touch, feel, or eyeball to get a sense
of how much there was. Secondly, I had
no real reason to care how much code I
was writing; I just kept writing until I got
the desired results and then moved on to
the next challenge. Finally, as an engi-
neering student, I was expected to learn
how to program but was never taught to
appreciate the fact that developing soft-
ware was an engineering discipline. The
idea of size being a characteristic of soft-
ware was foreign to me—what did it real-
ly mean and what was the context? And
why would anyone care?

Now, 25 years later, if you Google the
phrase software size you will get more than
100,000 hits. Clearly, there is a reason to
care about software size and there are lots
of people out there worrying about it.
And still, I am left to wonder: What does
it really mean and what is the context?
And why does anyone care?

It turns out that there are several very
good reasons for wanting to measure soft-
ware size. Software size can be an impor-
tant component of a productivity compu-
tation, a cost or effort estimate, or a qual-
ity analysis. More importantly, a good soft-
ware size measure could conceivably lead
to a better understanding of the value
being delivered by a software application.
The problem is that there is no agreement
among professionals as to the right units
for measuring software size or the right
way to measure within selected units.

This article examines the various
approaches used to measure software size
as the discipline of software engineering

evolved throughout the last 25 years. It
focuses on reasons why these approaches
were attempted, the technological or
human factors that were in play, and the
degree of success achieved in the use of
each approach. Finally, it addresses some
of the reasons why the software engineer-
ing community is still searching for the
right way to measure software size.

Lines of Code
As software development moved out of
the lab and into the real world, it quickly
became obvious that the ability to mea-

sure productivity and quality would be
useful and necessary. The lines of code
(LOC) measure—including source LOC
(SLOC), thousands of LOC, and thou-
sands of SLOC—is a count of the num-
ber of machine instructions developed.
It was the first measure applied to soft-
ware, with its first documented use by
R.W. Wolverton in his attempt to formal-
ly measure software development pro-
ductivity [1].

In the ’70s, the LOC measure
seemed like a pretty good device.
Programming languages were simple
and a fairly compelling argument could
be made about the equivalence among
LOC. Besides, it was the only measure in
town.

In the late ’70s, RCA introduced the
first commercially available software
cost estimation tool, which used SLOC
converted to machine instructions as the
size measure for software items being
estimated. In the ’80s, Barry Boehm’s
COCOMO was introduced, also using
SLOC as the size measure of choice. As
other cost models followed, they too
used LOC measures to quantify the
amount of functionality being delivered.
It is important to note that while all of
these models used SLOC as a primary
cost driver, there are many other factors
that influence the cost of software
development as well. These software
cost estimation models also need to
gather information about factors such as
the complexity of the software being
estimated, the experience and capability
of the software development team,
expected reuse, the overall productivity
of the development organization, con-
straints, and so forth. The quantification
of these factors is applied to the soft-
ware size to determine estimates of cost
and effort.

I believe that SLOC will go down in
the annals of engineering history as the
most maligned measure of all time.
There are many areas where criticism of
SLOC as a software size measure is jus-
tified. SLOC counts are, by their nature,
very dependent on programming lan-
guage. You can get more functionality
with a line of Visual C++ than you can
with a line of FORTRAN, which is
more than you get with a line of
Assembly Language. This does make
using SLOC as a basis for a productivity
or quality comparison among different
programming languages a bad idea.

The Evolution of Software Size: A Search for Value©

Software size measurement continues to be a contentious issue in the software engineering community. This article reviews soft-
ware sizing methodologies employed through the years, focusing on their uses and misuses. It covers the journey the software
community has traversed in the quest for finding the right way to assign value to software solutions, highlighting the detours
and missteps along the way. Readers will gain a fresh perspective on software size, what it really means, and what they can
and cannot learn from history.

Arlene F. Minkiewicz
PRICE Systems, LLC

Software Engineering Technology

© Copyright PRICE Systems, 2009.

“Now, 25 years later,
if you Google the

phrase software size you
will get more than

100,000 hits.
Clearly, there is a

reason to care about
software size and

there are lots of people
out there worrying

about it.”

24 CROSSTALK The Journal of Defense Software Engineering March/April 2009

Software Engineering Technology

Capers Jones has gone so far as to label
such comparisons “professional mal-
practice” [2].

Concerns also surround the consis-
tency of SLOC counts, even within the
same programming language. There are
several distinct methods for counting
LOC. Counting physical LOC involves
counting each line of code written while
logical lines involve counting the lines
that represent a single complete thought
to the compiler. In many programming
languages, spaces are inconsequential;
because of this, the differences between
physical and logical lines can be signifi-
cant. Add to this the fact that even with-
in each of these methods, there are ques-
tions as to how to deal with blanks, com-
ments, and non-executable statements
(such as data declarations). Programmer
style also influences the number of LOC
written as there are multiple ways a pro-
grammer may decide to solve a problem
with the same language.

Additionally, if SLOC is the only
characteristic of a software program that
is measured, productivity and quality
studies will overlook many important
factors. Other important characteristics
include the amount of reuse, the inher-
ent difficulty of solving a particular
problem, and environmental factors that
model the approaches and practices of
an organization. All of these things
influence the productivity of a project.

In general, it is fair to say that SLOC
measurement, considered in a vacuum,
is a poor way to measure the value that
is delivered to the end user of the soft-
ware. It does continue to be a popular
measure for software cost and effort
estimation. Even as other metrics have
emerged that are considered better by
much of the software engineering com-
munity, many of the popular method-
ologies used for estimation rely on
SLOC; many go so far as to convert the
better measures into SLOC before actual-
ly performing estimates.

There are several likely factors as to
why the SLOC method continues to be
used despite its many limitations. Many
of the organizations that care about
software measurement have historical
databases based on SLOC measures. So,
although it is a valid argument that
SLOC are impossible to estimate at the
requirements phase of a project, it is not
hard to understand why so many organi-
zations find that they can do it success-
fully within their own product space.
They have calibrated their processes and
understanding around this and have met
significant success using the SLOC

method for estimation and measurement
within the context of their projects and
practices. Another important considera-
tion is the fact that once an organization
has agreed on measurement rules for
SLOC, counting can be automated so
that completed projects can be mea-
sured with minimal time and effort and
without subjectivity.

Function Points
In 1979, Allan J. Albrecht introduced
function points, which are used to quan-
tify the amount of business functionali-
ty an information system delivers to its
users [3]. Where SLOC represents some-
thing tangible that may or may not relate
directly to value, function points attempt
to measure the intangible of end user
value. Function point counts look at the

five basic things that are required for a
user to get value out of software: Input,
Outputs, Enquiries, Internal Data
Stores, and External Data Stores. A
function point count looks at the num-
ber and complexity of each of these
components in order to determine the
amount of end user functionality deliv-
ered. Function points create a context
for software measurement based on the
software’s business value.

Function points also offer a way to
measure productivity that is indepen-
dent of technology and environmental
factors. It doesn’t matter what program-
ming language is being used or how
mature the technology is, it doesn’t mat-
ter how verbose or terse the program-
mers are, it doesn’t matter what hard-
ware platform is used—100 function
points is 100 function points. This pro-
vides businesses a way of looking at var-
ious software development projects and

assessing the productivity of their
processes.

While I would be remiss not to
acknowledge the great contribution that
Albrecht made to the software engineer-
ing community with the introduction of
function points, I would be equally
remiss to stop the story here. Function
points are not the answer to all software
measurement woes, as they come with
their own set of limitations.

Albrecht developed function points
to address a specific problem within his
organization, IBM. They, like many busi-
nesses that developed software, were
concerned with the problem of runaway
software projects and wanted to get a
better handle on their software develop-
ment processes. According to Tom
DeMarco, “you can’t manage what you
can’t measure” [4]. Function points
related very closely to the types of busi-
ness applications that IBM was develop-
ing at the time, proving to be a far supe-
rior measure of business value than
SLOC; function points can be much bet-
ter for an organization that develops
these types of systems to use for pro-
ductivity comparison studies.

It’s fair to say that function points
caught on like wildfire in the software
engineering community. Many new and
successful businesses grew around help-
ing software development organizations
use function points to improve their mea-
surement and quality programs, especial-
ly for commercial IT software develop-
ments. Two problems grew out of the
introduction of function points. The first
was that the fervor to jettison the much-
maligned SLOC measures caused many
to embrace function points for all types
of systems, many not well-suited to func-
tion points. The second was that many
tried to use function points as a panacea
for all measurement problems.

Function points work best for data-
intensive systems where data flows,
input screens, output reports, and data-
base inquiries dominate. As the industry
tried to use function points to measure
the business value of real-time systems,
command and control systems, or other
systems with several internal logical
functions, they consistently under-repre-
sented the value that these systems
delivered. It turns out that information
about inputs, outputs, and data stores is
not adequate for determining the value
of software that has a lot going on
behind the scenes. In 1986, Software
Productivity Research developed feature
points to try to address this shortcoming
with function points. The feature point

“Where SLOC
represents something

tangible that
may or may not

relate directly to value,
function points attempt

to measure the
intangible of

end user value.”

March/April 2009 www.stsc.hill.af.mil 25

definition added algorithms to the enti-
ties that are counted and weighted. Mark
II function points were introduced by
Charles Symons and Boeing introduced
three-dimensional function points. The
Common Software Measurement Inter-
national Consortium’s (COSMIC) full
function points were unveiled in the late
’90s and became ISO-certified in 2003.
COSMIC function points provide multi-
ple measurement views, one from the
perspective of the user and one from the
perspective of the developer. All of
these alternate methods were intended
to address one or more of the weak-
nesses or limitations of Albrecht’s func-
tion points—now commonly referred to
as International Function Point Users
Group (or IFPUG) function points. The
industry loved the idea of having a point
system to define value, but, as with
SLOC, the industry could not agree on
the best way to measure points.

Despite the limitations and obstacles,
the industry finally had a better way to
measure productivity for software devel-
opment projects. And, if you can use it
to measure productivity, it certainly can
be used to estimate new projects as well.
If your organization knows how many
days it takes to build a function point,
planning projects into the future should
be a breeze. But a crazy thing happened
when organizations started using func-
tion points to estimate projects: They
discovered that things other than busi-
ness value drove project costs. While
function points were good for measur-
ing organizational productivity, they
weren’t really fitting the bill for estimat-
ing cost and effort. The value adjust-
ment factor (VAF) was added to the def-
inition of a function point in a rather
weak attempt to address this limitation.
VAF takes into account general systems
characteristics such as the amount of
online processing, performance require-
ments, installation ease, and reusability.
It then uses those characteristics to
adjust a function point count based sole-
ly on functional user requirements. With
the VAF, the function point community
managed to stray from business value
while adding very limited additional abil-
ity to accurately predict development
costs. Estimating costs using value-
adjusted function points became its own
form of professional malpractice.

Function points, in their many varia-
tions, offer the software engineering
community a better window into busi-
ness value, although the existence of
many definitions does not lead to the
cross-cultural comparisons of the pro-

ductivity desired. They still present a
good tool for organizations that develop
comparable software products to use for
both benchmarking and determining
best practices. There are, of course,
additional limitations with function
points. Although well-documented rules
exist for counting function points, there
is still subjectivity in the interpretation
of these rules. Furthermore, the process
of counting function points has yet to
be effectively automated; the manual
process is time-consuming and requires
professional certification.

Other Size Measurements
Other sizing measures have been intro-
duced over the years as well. In the ’80s,
as object-oriented (OO) design and
development gained popularity, there

was a flurry of activity to develop soft-
ware measurements related specifically
to artifacts that came from OO designs.
These measures made it possible to per-
form productivity studies across similar
projects. Little was done, however, to
relate these artifacts to the value that the
software delivers, making these studies
less applicable outside of a specific
application domain. Additionally,
because a design was required in order
to assess these artifacts, the measures
were not particularly suited to estima-
tion. OO metrics never really caught on
in a widespread fashion, although there
are pockets within the community that
have found OO measures they are happy
with and can use effectively.

There is a measure which grew out
of object orientation that shows some
promise in the representation of busi-
ness value. Use case points were intro-
duced in 1993 by Gustav Karner (see

[5]), with use cases being introduced by
Ivar Jacobson in the mid-80s [6]. Use
cases provide a language for describing
the requirements of a software system in
a way that facilitates communication
between developers and the eventual
users of the system. Each use case
describes a typical interaction that may
occur between a user (human operator
or other software system) and the soft-
ware. The focus is on the functions that
a user may want to perform or have per-
formed, rather than on how the software
will actually perform those functions.
Use case points count and classify the
actors in the use case and the transac-
tions that are required to make the use
case happen. Use case points describe
the functionality being delivered rather
than the way this functionality is imple-
mented; in other words, they describe
business value. As with function points,
there are still technical and implementa-
tion details that must be addressed on
top of business value when used for
estimation. Unlike function points, the
use case points can cover a wider spec-
trum of application types. The problem
with utilizing use cases is their lack of
standardization across the industry and
even across organizations. An organiza-
tion that has a well-defined process for
defining use cases could successfully use
them for productivity tracking and effort
estimation.

Agile software development prac-
tices are adding additional options for
measurement of the output and produc-
tivity of software projects. Agile devel-
opment offers a relatively new paradigm
for the successful production of soft-
ware solutions. The tenets of Agile
include very short, well-contained itera-
tions of software development that can
be carefully measured with respect to
the output of business value. Measures
of story points, acceptance tests passed,
and unit tests created and/or passed
replace more traditional measures with
values that speak more directly to the
business value added in each iteration.
Story point measures focus on function-
ality that provides end-to-end business
value. They are defined within the soft-
ware development group and are used
by the group to estimate effort and to
measure the productivity of successive
iterations. Over time, with discipline,
these groups become proficient at
assigning story points to the software
features they are asked to develop. Test
cases developed and/or passed measure
the quality dimension of business value.
Agile measures such as story points and

“But a crazy thing
happened when

organizations started
using function points to

estimate projects:
They discovered that

things other than
business value drove

project costs.”

The Evolution of Software Size: A Search for Value

26 CROSSTALK The Journal of Defense Software Engineering March/April 2009

Software Engineering Technology

tests passed, while having little value
outside of a specific software develop-
ment group for benchmarking or com-
parison studies, offer a great deal of
external value for communicating pro-
ductivity and quality and provide an
excellent tool for negotiating features
with management.

Future of Software Sizing
The software industry has struggled dur-
ing the last 25 years to find the right way
to assess the productivity and quality of
software development projects. The
entire industry continues searching for
solutions because high-quality assess-
ment methods are necessary for proper
project planning and execution. It is
important to understand organizational-
ly how productive our software develop-
ment ventures are. Organizations hop-
ing to improve software processes also
measure in order to benchmark their
organization against others considered
best in breed. The formula for productivi-
ty is output divided by effort. Our strug-
gle has centered on finding the right
units to describe output.

Clearly, LOC are a very tangible out-
put of the software development
process. Just as clearly, they are unsuit-
able to measure productivity except in
very tightly constrained environments
because there is no clear relationship
between a SLOC count and the amount
and complexity of features delivered to
the end user. Function points, feature
points, and all the other derivations of
this concept are not real and thus cannot
be considered output of the software
development process. They do, however,
supply, in many cases, a quantification of
features being delivered to the user. As
such, they have promise, within a
defined scope, as a measure for produc-
tivity across organizations. On their
own, they are not sufficient to estimate
future software development efforts
because they don’t measure non-func-
tional requirements that sometimes have
significant impacts on the amount of
effort required in software development.
Additional units of measure have been
introduced and have gained some suc-
cess within pockets of the community,
but nothing has managed to achieve
widespread popularity.

The software community continues
to struggle with measurement issues
because they continue to seek the silver
bullet solution. Every measurement exer-
cise needs to be conducted within a cer-
tain context and the temptation to apply

one unit of measurement to answer all
problems should be avoided. In a per-
fect world, it would be possible to estab-
lish a one-to-one correspondence
between the effort associated with a
software development project and the
business value delivered by that project;
in the real world, however, there are
other factors that come into play. What
seems clear is that with discipline, rigor,
and well-defined practices, organizations
can be successful using any unit for soft-
ware size for internal project planning
and productivity studies.

So far, we have failed to identify a
universally applicable measure for size.
The scope of a software project has
multiple dimensions. The amount of
user functionality is an important
dimension but, if viewed alone, it has
limited value outside of a very narrow
context. External benchmarking and
productivity studies need to be per-
formed within stratified categorizations
of feature complexity and non-function-
al requirements.

While there is still no answer to the
question of what’s the best way to mea-
sure the output of a software develop-
ment project, technology appears to be
leading us in a positive direction. You
can’t open your inbox without finding a
few spam e-mails talking about service-
oriented architecture (SOA), cloud com-
puting, or some other configuration that
separates the implementation of busi-
ness rules from the implementation of
the logistics necessary to deliver these
business rules—or, in other words, con-
figurations that separate IT-type func-
tionality from business-type functionali-
ty. While still not a silver bullet, organi-
zations that are truly able to achieve ser-
vice orientation put themselves in a
position to both measure the business
value of software projects and predict
the cost of delivery of future business
value using the same units of measure-
ment. This unit of measure, however,
may still require definition; if a way can
be found to quantify services, that may
lead to a better solution to the software
measurement quandary. As SOA and
related technologies become more wide-
spread (if they do actually become more
widespread), this is definitely an area for
further research.

The software engineering communi-
ty should be commended for efforts in
size measurements. There have been sig-
nificant strides during the last quarter
century in an effort to evolve measure-
ment practices. There is a continued
pursuit of a better measure to describe

the output and productivity of software
development projects. Simultaneously,
the software engineering community is
attempting to bridge the gap between IT
and the business by working towards a
business value-based language to
describe our software.u

References
1. Wolverton, R.W. “The Cost of

Developing Large-Scale Software.”
IEEE Transactions on Computers
Vol. C-23, No. 6: 615-636, June 1974.

2. Jones, Capers. “Measuring Defect
Potentials and Defect Removal Effi-
ciency.” CrossTalk June 2008.

3. Albrecht, Allan J. Measuring Appli-
cation Development Productivity.
Proc. of the Joint SHARE, GUIDE,
and IBM Application Development
Symposium. 14-17 Oct., Monterey,
CA. IBM Corporation, 1979.

4. DeMarco, Tom. Controlling Software
Projects: Management, Measurement
and Estimates. Upper Saddle River,
NJ: Prentice Hall PTR, 1986.

5. Banerjee, Guntam. “Use Case Points –
An Estimation Approach.” Aug. 2001
<www.comp.nus.edu.sg/~bimlesh/
oometrics/15/1035194512861.pdf>.

6. Cockburn, Alistair. “Use Cases, Ten
Years Later.” Software Testing and
Quality Engineering Magazine Mar./
Apr. 2002.

About the Author

Arlene F. Minkiewicz is
the chief scientist at
PRICE Systems, LLC. In
this role, she leads the
cost research activity for
the entire suite of cost

estimating products that PRICE pro-
vides. Minkiewicz has more than 24 years
of experience with PRICE building cost
models. Her recent accomplishments
include the development of new cost
estimating models for IT projects.
Minkiewicz has published many articles
on software measurement and estimation
and frequently presents her research at
industry forums.

PRICE Systems, LLC
17000 Commerce PKWY
STE A
Mt. Laurel, NJ 08054
Phone: (856) 608-7222
E-mail: arlene.minkiewicz@

pricesystems.com

March/April 2009 www.stsc.hill.af.mil 27

Software projects are notoriously com-
plex and difficult to estimate accurate-

ly. Many authors have referred to estima-
tion as a black art. Estimating a project
accurately involves carefully analyzing data
from many different aspects of the pro-
ject, and using a number of different tech-
niques to get the best estimate possible
with the given information. Even then—
depending on the accuracy of project
information and how far along the project
is in its life cycle—the estimate may still
not be very close to the actual values at the
project’s completion.

Accurate project estimates, even early
in a project’s life cycle, are extremely
important to an organization’s success. For
example, when prospective customers
have received their requested proposals for
a certain project and have gone through
their initial proposal evaluation process,
those short-listed organizations will have to
submit cost and schedule estimates. If the
organization awarded the project has initial
estimates that are too optimistic, they may
get stuck developing a project that runs
over budget or breaks the contract in
terms of scheduling; the end result may be
losing revenue instead of turning a profit.
If a certain organization’s initial estimate is
too pessimistic, they are likely to be reject-
ed in favor of another whose estimates
look more favorable to the customer.
When so much is resting on finding accu-
rate estimates—especially early in the
requirements definition phase of a pro-
ject—it is in every company’s best interest
to apply any and all available techniques to
make sure their estimates are as close as
possible to the actual values.

Despite many developments in estima-
tion techniques, most project estimates are
still not very good. In fact, only about one-
third of all projects are completed on-time
and on-budget, with some off in both
areas and others so far gone that they are
discontinued before completion. These
numbers represent huge losses in profit.
However, it is sometimes difficult to trace
these losses directly back to problems in
the estimating processes.

A number of different factors play into

this problem of poor estimation. One of
the most common is that, in many cases,
accurate estimation techniques are simply
not applied. Many organizations, in the
interest of saving time and money, try
guessing at project estimates with no for-
mal process for determining the project’s
cost and scheduling needs [2]. This is most
likely due to a lack of understanding of the
importance of estimates. Estimating accu-
rately involves a lot of time and money,
and there is not always any direct and easy
way to see a return on any investments
made in proper estimation processes.

Sometimes organizations will try to
take shortcuts to save money in estimation.
One of the most common mistakes is bas-
ing estimates entirely off of historical data
from past projects. The estimator will sim-
ply find a project that seems similar to the
project they are estimating and use the
final values from that project. While this
technique is an important piece of the esti-
mation process, when used alone it is a
proven cause of schedule and cost over-
runs [2]. Since the industry is constantly
developing and changing quickly, estimates
based entirely on historical data are not
enough. For accuracy, historical data
should be used alongside other methods to
find the most accurate possible estimates.
It is important to use those values, but also
to check them against values obtained
from the latest updated estimation models
and tools to keep up with the industry as it
changes.

Another common problem is that
deadlines are sometimes set before esti-
mates are even made. The estimator then
has to count backwards from the deadline
in order to make the estimate instead of
forming their own schedule [1]. This dis-
courages a proper estimating process and
is likely to influence the estimator into
making overly optimistic estimates.

Even when good estimating models
and tools are used, sometimes not enough
effort is put into making sure the estimates
are based on accurate or complete infor-
mation. As one author puts it, “any esti-
mate is only as accurate as its least accurate
input variable” [1]. It is extremely impor-

tant that estimators take the time to make
sure all their data is as accurate as possible
for that stage of the project’s development
before committing to any final estimates.
If the data used to make the estimates is
incomplete or inaccurate, the resulting esti-
mate will also be incomplete and inaccu-
rate.

There are a number of tactics that can
be applied to help solve some of these
problems. The most important of these is
that a proper formal estimation process
should be used in all cases. Guessing or
taking shortcuts to come up with quick
results will not provide the quality esti-
mates that are needed. Formal estimation
techniques are proven to make estimates
much more accurate, especially early in
project development when the require-
ments and risks are not yet clearly defined
[2]. When so much rests on estimates
being accurate, it is important not to cut
any corners.

Another technique is to use multiple
estimating techniques in combination.
Using historical data from your own orga-
nization (as well as from others) and a few
different models and tools can help find
the best possible estimate [3]. Each of the
estimates found from these techniques is
an approximation. It is very unlikely that
any of them will be exact: Multiple tech-
niques can bring the final estimate closer
to the right target.

Since all estimates are really only
approximations, it is best to avoid settling
on any single number. Early on—when
requirements may not be completely
defined and other changes in the project’s
completion plans may still take place—
estimates are often significantly inaccu-
rate. One technique to improve accuracy is
to provide a best-case-scenario estimate, a
worst-case-scenario estimate, and an
expected estimate. The final estimate can
then be provided as a range of values,
rather than committing to one specific
value from the start [1]. For example, an
estimator may say that a project is likely to
cost between $350,000 and $600,000. This
gives the organization a general idea of
how much the project will cost, but does

Understanding Software Project Estimates

With two-thirds of software projects running long and over budget [1], it is important that upper management understand
the value of proper estimation techniques, and that their estimators are as accurate as possible. This article discusses formal
estimation techniques, accurate software estimation tools, the misinterpretation of estimation as target setting, and the accu-
racy of estimates.

Katherine Baxter
Champlain College

Open Forum

Open Forum

28 CROSSTALK The Journal of Defense Software Engineering March/April 2009

not fool them into thinking the estimate is
more than an approximation.

For large-scale projects, however, man-
ual estimation is not enough. There are a
number of complex tools available to help
create accurate estimates; for complicated
projects with many parts, these are some-
times the only way to get a good estimate.
In general, these tools are much more
accurate than estimation by hand. Manual
estimates tend to be too optimistic, often
by more than 30 percent [4]. Even when
they are done more carefully, a manual
estimate will rarely be more accurate than
an estimate made with the help of one of
these tools.

Understanding the importance of
accurate estimation—and a willingness to
put in the resources needed to support
good estimation processes—are vitally
important to an organization’s success.
Learning what is involved in making good
estimates, and what techniques can help
improve estimate accuracy even more, are
important first steps.

Estimation Tools
There are a number of software estima-
tion tools available to help in making accu-
rate estimates. For larger projects of more
than a thousand function points, it is
almost always necessary to use these tools
rather than attempt manual estimation:
They are complex and have so many fac-
tors that must be taken into account that
an estimation tool is much faster than esti-
mating by hand [4]. Even for smaller pro-
jects, there are a number of advantages to
using automated tools rather than pure
manual estimation.

Automated estimation tools tend to be
much more accurate than manual estima-
tion. Since there is less human interference,
the estimates are less likely to be influenced
by human bias that might make them unre-
alistically optimistic. Automated tools are
also much less likely to underestimate or
overlook effort involved in areas such as
design, documentation, and testing [5].

There are many features that are fairly
standard across most estimation tools that
will assist in sizing estimates and estimat-
ing at the phase, activity, and task levels.
They will also help with general quality
and reliability estimation. Most will sup-
port size measurements in both function
point and source lines of code units, and
support conversions from one to the
other. Most tools also have support for a
variety of different languages, including
older languages such as COBOL and
FORTRAN.

Some tools also provide other features,
but these are not standard across all tools.

Some will perform risk and value analysis,
inflation calculations for long-term pro-
jects, and currency conversions for inter-
national projects. Some will provide sup-
port for various standards like the SEI’s
CMMI®. Many tools also allow the organi-
zation to input historical data, which is
then used to adjust scheduling and other
estimates. Because estimation tools are
often used in combination with project
management tools such as Artemis or
Microsoft Project, many also provide
interfacing capabilities [4].

Even with all these features, there are
still many aspects of a project that must
be accounted for manually. They include
things such as fees for trademark and
copyright searches and legal expenses for
any breach of contract if a project is not

completed on-time or on-budget [4].
Generally though, when all input factors
are carefully considered and are accurate,
estimation tools will provide a thorough
and accurate estimate of a much higher
quality than can be achieved by hand.

Estimation Isn’t Target Setting
One common misunderstanding is that
estimation is simply the process of finding
a target end-date and total cost for a pro-
ject. This assumption is dangerous
because estimates are not exact, and early
estimates are not nearly precise enough to
pin down exact values. Committing to spe-
cific values early on is likely to cause the
project to either go over schedule or run
too long.

Estimates can help provide a general
idea of when a project will be finished and
how much it will cost, but it is impossible
to settle on specific values with total cer-
tainty. For example, one could estimate
that a project is likely to be finished some-
time between 10 and 16 months, but there
is still a chance that the project will not be
completed within this time frame. Even
setting a target end-date at the end of this
range could be dangerous. Moving the

target end-date with no particular pur-
pose does nothing but change the proba-
bility of the project actually finishing on
schedule [2]. Clearly, this estimate is not a
good basis for choosing a specific end-
date.

Target setting takes place when an
external factor is determining a required
end-date or budget. If a project must be
completed by a certain event (like a spe-
cific conference) or by the end of a fiscal
year, then a target end-date is set. The
estimation process then becomes a mat-
ter of deciding how much can be com-
pleted by that date with a certain amount
of resources, and refining the require-
ments to fit into this time frame [2].
Working backwards carefully like this can
ensure that the project finishes by a cer-
tain date, but it may involve sacrifices in
requirements or an increase in resources.
If there is no specific end-date, using the
estimation process to set one is risky.

Estimation is a process of taking a set
of input values, conducting some careful
analysis, and ending with a set of results.
Once these results are found, it makes no
sense to try to argue against or change
results. The estimation process cannot be
altered to achieve different results, and
trying to change them to fit within a cer-
tain budget or time frame will only make
the project less likely to succeed. If the
results of an estimate are not satisfactory,
the only reasonable way to change them
is by adjusting the inputs—the informa-
tion that the estimate was based on.

Inputs, like requirements and re-
sources, determine the final results of
estimation. Changing these values is the
only way to reasonably affect the estima-
tion results. If the estimated cost of a
project is too high, it may be possible to
adjust it by reducing the functionality of
the system, consequently making the pro-
ject smaller. If the estimated time frame
is too long, it can often be changed by
adding more resources to the project.
These are the only meaningful ways to
change estimated values.

Accuracy of Estimates
Early on in a project’s development, esti-
mates are likely to be very inaccurate.
Estimates are based on inputs concerning
what is known about the project; conse-
quently, if the concept of the project is
not entirely clear or does not match exact-
ly with what the finished product will look
like, the estimate is likely to be pretty far
off from the final values. Functionality
may need to be added or adjusted as the
product is developed because require-

“Understanding the
importance of accurate

estimation, and a
willingness to put in the
resources ... are vitally

important to a
company’s success.”

Understanding Software Project Estimates

March/April 2009 www.stsc.hill.af.mil 29

ments change often during project devel-
opment and systems often don’t work
exactly as planned. Because this uncertain-
ty is based in the inputs and not in the esti-
mation process, spending more time on
the estimate itself will not necessarily
make it more accurate [6]. While spending
extra time in the planning phase and
ensuring all of the processes used are
mature can help increase the accuracy of
early estimates, it is still not accurate
enough to meaningfully commit to specif-
ic values [2].

As the project progresses—and
requirements become clearer and eventu-
ally set in stone—estimates become more
accurate. Estimates in the conceptual
phase (before extensive planning is done)
are often off by as much as 50 percent,
but are down to approximately 25 percent
by the time functionality is determined. By
the time the project is actually being
implemented, estimates are usually within
10 percent of the final values [7]. It is
important to note that these values are
based on estimates made by skilled, expe-
rienced estimators and formal estimation
methods. If the estimators were less expe-
rienced or used less precise estimating
techniques, their estimates would likely be
even further off the mark [6].

The most significant improvements in
estimation accuracy occur during the first
20 to 30 percent of project development
[6]. This represents the planning phases
where the unknowns that cause such prob-
lems with estimation accuracy are being
eliminated. To understand an estimate at
any given point in development, it is
important to understand how precise one
can expect estimates to be at that stage.

Because early estimates are so inaccu-
rate, it is important that they are never
treated as exact expected final values.
Early estimates should always be
expressed in ways that clearly show this
uncertainty, such as describing them as
ranges of values rather than fixed points
[2]. It is also essential that no commit-
ments to specific values are made early on.
Because there is so much possibility for
inaccuracy early in development, any com-
mitments made within the first 30 percent
of a project’s life cycle are not reasonable
or meaningful [6].

Estimates should never be treated as
exact final values, but early estimates in
particular should be treated with care. As
one author explains, “the only time we
have sufficient data to truly warrant the
label ‘accurate’ is at the very end of the
project when all the variables are resolved.
Unfortunately, no one will ever ask for an

estimate at that stage” [8].u

References
1. Dekkers, Carol A. “Creating Require-

ments-Based Estimates Before Re-
quirements Are Complete.” Cross-
Talk Apr. 2005 <www.stsc.hill.af.
mil/crosstalk/2005/04/0504Dekkers.
html>.

2. Henry, David. “Software Estimation:
Perfect Practice Makes Perfect.”
CrossTalk June 2002 <www.stsc.
hill.af.mil/crosstalk/2002/06/henry.
html>.

3. Stutzke, Richard. “Software Esti-
mation: Challenges and Research.”
CrossTalk Apr. 2000 <www.stsc.
hill.af.mil/crosstalk/2000/04/stutzke.
html>.

4. Jones, Capers. “Software Cost Esti-
mation in 2002.” CrossTalk June
2002 <www.stsc.hill.af.mil/crosstalk/
2002/06/jones.html>.

5. Jones, Capers. “Software Cost Esti-
mating Methods for Large Projects.”
CrossTalk Apr. 2005 <www.stsc.
hill.af.mil/crosstalk/2005/04/0504
Jones.html>.

6. “The Cone of Uncertainty.” Construx.
2008 <www.construx.com/Page.aspx
?hid=1648>.

7. Roetzheim, William. “Estimating and
Managing Project Scope for New
Development.” CrossTalk Apr.
2005 <www.stsc.hill.af.mil/crosstalk/
2005/04/0504Roetzheim.html>.

8. Armour, Phillip. “Ten Unmyths of
Project Estimation.” Communications
of the ACM Vol. 45. No. 11, Nov.
2002.

About the Author

Katherine Baxter is a
programmer at Cham-
plain College’s Emergent
Media Center, where she
creates computer games
for use in education and

training. Baxter also recently developed
educational games for children at Tertl
Studos in Montpelier, Vermont. She is
completing her bachelor’s degree in soft-
ware engineering at Champlain College,
where she will graduate this spring.

Champlain College
PO Box 670 Box 51
Burlington,VT, 05401
Phone: (978) 807-1793
E-mail: baxter.katherine@

gmail.com

Get Your Free Subscription

Fill out and send us this form.

517 SMXS/MXDEA

6022 Fir Ave

Bldg 1238

Hill AFB, UT 84056-5820

Fax: (801) 777-8069 DSN: 777-8069

Phone: (801) 775-5555 DSN: 775-5555

Or request online at www.stsc.hill.af.mil

NAME:__

RANK/GRADE:___

POSITION/TITLE:__

ORGANIZATION:___

ADDRESS:__

__

BASE/CITY:__

STATE:___________________________ZIP:___________________________________

PHONE:(_____)___

FAX:(_____)___

E-MAIL:__

CHECK BOX(ES) TO REQUEST BACK ISSUES:

OCT2007 c SYSTEMS ENGINEERING

NOV2007 c WORKING AS A TEAM

DEC2007 c SOFTWARE SUSTAINMENT

FEB2008 c SMALL PROJECTS, BIG ISSUES

MAR2008 c THE BEGINNING

APR2008 c PROJECT TRACKING

MAY2008 c LEAN PRINCIPLES

SEPT2008 c APPLICATION SECURITY

OCT2008 c FAULT-TOLERANT SYSTEMS

NOV2008 c INTEROPERABILITY

DEC2008 c DATA AND DATA MGMT.

JAN2009 c ENG. FOR PRODUCTION

FEB2009 c SW AND SYS INTEGRATION

To request back issues on topics not
listed above, please contact <stsc.
customerservice@hill.af.mil> .

Departments

30 CROSSTALK The Journal of Defense Software Engineering March/April 2009

BACKTALK

March/April 2009 www.stsc.hill.af.mil 31

It was a quiet afternoon. I was in my home-office busily
penning the masterpiece that was to become my first novel

when a bizarre, pulsating noise began emanating from the
computer speakers. It buzzed in a strange symphony for a
few moments, faded, and was gone.

My mind immediately became engaged in rampant specu-
lation. The fact that I lived near a large military base weighed
in and possibilities swirled as to what covert operation or top
secret data burst I had unintentionally intercepted. But then
common sense and years of communications engineering
experience weighed in.

When that raspy buzz returned about a week later, I
opened the blinds to see a natural gas company truck,
bristling with antennas, slowly driving by. The sound was
nothing more than circuitry in my computer speakers partial-
ly demodulating an active data acquisition transmission used
to gather usage information from gas meters equipped with
digital radio frequency technology.

Science fiction writer Arthur C. Clarke said: “Any suffi-
ciently advanced technology is indistinguishable from
magic.” The statement implies that when our ability or desire
to comprehend science goes beyond what we believe to be
possible, we limit ourselves by our beliefs, and not necessar-
ily technology. If you think about it, it’s often only a lack of
knowledge or understanding that makes one man’s science
another’s science fiction.

Did you know that during World War II, the Japanese mil-
itary made “balloon bombs” designed to travel the jet
streams across the Pacific to drop on the United States? A
few actually made it. The Japanese were also working on a
giant high radio frequency “ray gun” intended to immobilize
attacking troops en masse. As well, the Germans were work-
ing on a host of their own strange weapons, including a giant
air cannon intended to blow the wings off of overflying air-
craft.

A wild American idea that lost out to the Manhattan
Project was the “Bat Bomb.” Thousands of bats were fitted
with small incendiary devices and loaded onto trays in a lay-
ered “bomb” to be dropped over Japanese cities.
Theoretically, the trays would deploy and the bats would dis-
perse, landing and roosting in the mostly wooden Japanese
structures where the incendiaries would ignite and burn, in-
turn setting the cities ablaze. The weapon was built and test-
ed, but never deployed.

During the Cold War, the Soviet Union was a candy store
for supposed “fringe science.” Reports of psychic warfare
involving experiments with mind control, telekinetics, and
remote-viewing espionage (the ability to psychically “see” the
physical environment of a distant location) were public
knowledge, or hyperbole. In the ’70s, a Nikola Tesla-like
glowing “energy dome” was supposedly seen over Siberia by
a commercial airline pilot. A reconnaissance photo published
in 1980 showed a facility speculated to be their government’s
attempt at a massive particle beam weapon. Soviet agents
were once caught beaming microwave signals into the
American Embassy. Some say it was surveillance. Others say
it was an ongoing mind-control experiment. What is real?

I wasn’t quite a teenager in the mid-70s when the infa-
mous Russian Duga series over-the-horizon radar system

suddenly filled the world’s airwaves and the speakers of my
modest Electrophonic stereo with its sharp, pulsing, 10 cycles
per second “TAP TAP TAP.” Designed to detect the plumes
of long-range ballistic missile launches over the lands of its
enemies, the signal wreaked havoc with communications and
electronic systems throughout North America where a prima-
ry signal path had been directed from over the North Pole.
Conspiracy theorists went berserk. But it was the world’s
Amateur Radio operators who quickly pulled out their oscillo-
scopes and radio direction finding equipment to evaluate the
signal, find its origin, and posit as to its likely and logical
intent.

Chris Carter’s TV series, The X-Files, coined a phrase equal-
ly prophetic to conspiracy theorists, scientists, and Tibetan
monks: “The truth is out there.”

There are those, possibly a few reading CrossTalk right
now, who are privy to real science and technology so advanced
that for many it would undoubtedly seem like science fic-
tion—or magic. Even the ideas of particle beam weapons and
“death rays” have now evolved into ground- and aircraft-based
chemical lasers and microwave-based crowd deterrents.
Technology, creativity, and ambition soldier on.

So what else is “out there”?
Now that I think about it, I can’t be sure that really was a

company gas truck. Did some covert agency find out about
those strange scalar weaponry documents that mysteriously
showed up a few years ago?

What could really be going on inside all those new digital
televisions and converter boxes that we “have to get”? Can the
microphone and camera in my cell phone really be activated
without my knowledge? Is the European Organization for
Nuclear Research (CERN) really producing antimatter? Could
the mass energy in a fountain pen actually supply enough
power to run a city for a day? The Defense Advanced
Research Projects Agency? The Aurora Project? Dark matter?
The High Frequency Active Auroral Research Program?
Wormholes?

And just how do you suppose Nikola Tesla’s scientific
papers managed to become “lost” anyway?

Isn’t paranoia—I mean science and imagination—wonder-
ful?

—Ranse Parker
author@ranseparker.com

Real Science ... Fiction

Can You BackTalk?

Here is your chance to make your point without your boss
censoring your writing. In addition to accepting articles that
relate to software engineering for publication in CrossTalk,
we also accept articles for the BackTalk column. These arti-
cles should provide a concise, clever, humorous, and insight-
ful perspective on the software engineering profession or
industry or a portion of it. Your BackTalk article should be
entertaining and clever or original in concept, design, or deliv-
ery, and should not exceed 750 words.

For more information on how to submit your BackTalk
article, go to <www.stsc.hill.af.mil>.

CrossTalk / 517 SMXS/MXDEA
6022 Fir AVE
BLDG 1238
Hill AFB, UT 84056-5820

PRSRT STD
U.S. POSTAGE PAID

Albuquerque, NM
Permit 737

CrossTalk thanks
the above

organizations for
providing their support.

	Front Cover
	Table of Contents
	From the Publisher
	Reinforcing Good Practices
	Software Assurance Practice at Ford: A Case Study
	Defect Detection By Developers
	A Uniform Approach for System ofSystems Architecture Evaluation
	Static Analyzers in Software Engineering
	Management’s Inspection Responsibilitiesand Tools for Success

	Software Engineering Technology
	The Evolution of Software Size: A Search for Value©

	Open Forum
	Understanding Software Project Estimates

	Coming Events
	Call for Articles
	Web Sites
	SSTC Ad
	BackTalk
	Back Cover

